Asymptotic behavior and existence of solutions for singular elliptic equations

被引:0
作者
Riccardo Durastanti
机构
[1] “Sapienza” Università di Roma,Dipartimento di Scienze di Base e Applicate per l’ Ingegneria
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
Semilinear elliptic equations; Quasilinear elliptic equations; Singular elliptic equations; Singular natural growth gradient terms; Asymptotic behavior; 35B40; 35J25; 35J61; 35J62; 35J75;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior, as γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} tends to infinity, of solutions for the homogeneous Dirichlet problem associated with singular semilinear elliptic equations whose model is -Δu=f(x)uγinΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u=\frac{f(x)}{u^\gamma }\,\text { in }\Omega , \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open, bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} and f is a bounded function. We deal with the existence of a limit equation under two different assumptions on f: either strictly positive on every compactly contained subset of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} or only nonnegative. Through this study, we deduce optimal existence results of positive solutions for the homogeneous Dirichlet problem associated with -Δv+|∇v|2v=finΩ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta v + \frac{|\nabla v|^2}{v} = f\,\text { in }\Omega . \end{aligned}$$\end{document}
引用
收藏
页码:925 / 954
页数:29
相关论文
共 89 条
  • [41] Crandall MG(undefined)Nonexistence of solutions for singular elliptic equations with a quadratic gradient term undefined undefined undefined-undefined
  • [42] Rabinowitz PH(undefined)undefined undefined undefined undefined-undefined
  • [43] Tartar L(undefined)undefined undefined undefined undefined-undefined
  • [44] Croce G(undefined)undefined undefined undefined undefined-undefined
  • [45] Dall’Aglio A(undefined)undefined undefined undefined undefined-undefined
  • [46] Orsina L(undefined)undefined undefined undefined undefined-undefined
  • [47] Petitta F(undefined)undefined undefined undefined undefined-undefined
  • [48] De Cave LM(undefined)undefined undefined undefined undefined-undefined
  • [49] Durastanti R(undefined)undefined undefined undefined undefined-undefined
  • [50] Oliva F(undefined)undefined undefined undefined undefined-undefined