Asymptotic behavior and existence of solutions for singular elliptic equations

被引:0
作者
Riccardo Durastanti
机构
[1] “Sapienza” Università di Roma,Dipartimento di Scienze di Base e Applicate per l’ Ingegneria
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
Semilinear elliptic equations; Quasilinear elliptic equations; Singular elliptic equations; Singular natural growth gradient terms; Asymptotic behavior; 35B40; 35J25; 35J61; 35J62; 35J75;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior, as γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} tends to infinity, of solutions for the homogeneous Dirichlet problem associated with singular semilinear elliptic equations whose model is -Δu=f(x)uγinΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u=\frac{f(x)}{u^\gamma }\,\text { in }\Omega , \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is an open, bounded subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} and f is a bounded function. We deal with the existence of a limit equation under two different assumptions on f: either strictly positive on every compactly contained subset of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} or only nonnegative. Through this study, we deduce optimal existence results of positive solutions for the homogeneous Dirichlet problem associated with -Δv+|∇v|2v=finΩ.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta v + \frac{|\nabla v|^2}{v} = f\,\text { in }\Omega . \end{aligned}$$\end{document}
引用
收藏
页码:925 / 954
页数:29
相关论文
共 89 条
  • [1] Arcoya D(2009)Singular quasilinear equations with quadratic growth in the gradient without sign condition J. Math. Anal. Appl. 350 401-408
  • [2] Barile S(2009)Existence and nonexistence of solutions for singular quadratic quasilinear equations J. Differ. Equ. 246 4006-4042
  • [3] Martínez-Aparicio PJ(2008)Quasilinear equations with natural growth Rev. Mat. Iberoam. 24 597-616
  • [4] Arcoya D(2010)Uniqueness of solutions for some elliptic equations with a quadratic gradient term ESAIM Control Optim. Calc. Var. 16 327-336
  • [5] Carmona J(2008)Dirichlet problems with singular and gradient quadratic lower order terms ESAIM Control Optim. Calc. Var. 14 411-426
  • [6] Leonori T(2014)Some properties of solutions of some semilinear elliptic singular problems and applications to the G-convergence Asymptot. Anal. 86 1-15
  • [7] Martínez-Aparicio PJ(2010)Semilinear elliptic equations with singular nonlinearities Calc. Var. PDEs 37 363-380
  • [8] Orsina L(2011)Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources Adv. Calc. Var. 4 397-419
  • [9] Petitta F(2015)Some regularity results for a singular elliptic problem Dyn. Syst. Differ. Equ. Appl. Proc. AIMS 2015 142-150
  • [10] Arcoya D(2014)Symmetrization for singular semilinear elliptic equations Ann. Mat. Pura Appl. 4 389-404