Two-step method with vanished phase-lag and its derivatives for problems in quantum chemistry: an economical case

被引:0
作者
Maxim A. Medvedev
T. E. Simos
机构
[1] Ural Federal University,Department of Medical Research, China Medical University Hospital
[2] Institute of Industrial Ecology UB RAS,Data Recovery Key Laboratory of Sichuan Province
[3] China Medical University,Section of Mathematics, Department of Civil Engineering
[4] Neijiang Normal University,undefined
[5] Democritus University of Thrace,undefined
来源
Journal of Mathematical Chemistry | 2021年 / 59卷
关键词
Phase-lag; Derivative of the phase-lag; Initial value problems; Oscillating solution; Symmetric; Hybrid; Multistep; Schrödinger equation; 65L05;
D O I
暂无
中图分类号
学科分类号
摘要
A new ECON2STEP (Economical Two-Step Method) method with vanished phase-lag and its derivatives up to order five is introduced in this paper, for initial or boundary value problems with solutions of oscillating and/or periodical behavior, with an application on problems in Chemistry.
引用
收藏
页码:1880 / 1916
页数:36
相关论文
共 301 条
  • [11] Rao PS(1976)mSymmetric multis J. Inst. Math. Appl. 18 189-202
  • [12] Chawla MM(1986)p methods for periodic initial values problems J. Comput. Appl. Math. 14 467-470
  • [13] Lyche T(1986)A new class of explicit 2-S J. Comput. Appl. Math. 15 213-223
  • [14] Simos TE(1986)p 4Th order methods for Y” = F(T, Y) with extended intervals of periodicity J. Comput. Appl. Math. 15 329-337
  • [15] Williams PS(1986)Families of 2-S J. Comput. Appl. Math. 16 233-236
  • [16] Thomas RM(1987)p 4Th-order P-stable methods for 2Nd-order differential-equations J. Comput. Appl. Math. 17 365-368
  • [17] Lambert JD(1998)A Noumerov-type method with minimal phase-lag for the integration of 2Nd-order periodic initial-value problems. 2. explicit method Int. J. Comput. Math. 69 85-100
  • [18] Watson IA(1998)2-Step 4Th-order P-stable methods with phase-lag of order 6 for Y”=F(T, Y) J. Comput. Appl. Math. 89 115-118
  • [19] Chawla MM(1999)An explicit 6Th-order method with phase-lag of order 8 for Y”=F(T, Y) Math. Comput. Model. 29 63-72
  • [20] Chawla MM(1989)Non-dissipative extended one-step methods for oscillatory problems Ima Journal of Numerical Analysis 9 145-165