Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces

被引:0
作者
Feng Liu
Qingying Xue
Kôzô Yabuta
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
[2] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[3] Kwansei Gakuin University,Research Center for Mathematical Science
来源
Science China Mathematics | 2020年 / 63卷
关键词
maximal singular integrals; maximal functions; Triebel-Lizorkin spaces; Besov spaces; 42B20; 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we systematically study several classes of maximal singular integrals and maximal functions with rough kernels in ℱβ(Sn−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{F}_{\beta}\left(\mathrm{S}^{n-1}\right)$$\end{document}, a topic that relates to the Grafakos-Stefanov class. The boundedness and continuity of these operators on Triebel-Lizorkin spaces and Besov spaces are discussed.
引用
收藏
页码:907 / 936
页数:29
相关论文
共 63 条
[1]  
Al-Balushi K(2014)Certain J Math Inequal 8 803-822
[2]  
Al-Salman A(2012) bounds for rough singular integrals Publ Mat 56 261-277
[3]  
Al-Qassem A(2002)Boundedness of rough integral operators on Triebel-Lizorkin spaces J Lond Math Soc (2) 66 153-174
[4]  
Cheng L(2004)Singular integrals with rough kernels in Canad Math Bull 47 3-11
[5]  
Pan Y(2008) log J Math Anal Appl 347 493-501
[6]  
Al-Salman A(2010)( J Math Anal Appl 368 677-691
[7]  
Pan Y(2002)) J Math Anal Appl 276 691-708
[8]  
Al-Salman A(2008)Singular integrals with rough kernels J Math Anal Appl 337 1048-1052
[9]  
Pan Y(2016)Rough singular integrals on Triebel-Lizorkin space and Besov space Sci China Math 59 1721-1736
[10]  
Chen Y(1986)Rough singular integrals supported on submanifolds Invent Math 84 541-561