Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions

被引:0
|
作者
Uğur Yüksel
A. Okay Çelebi
机构
[1] University of Atilim,Department of Mathematics
[2] University of Yeditepe,Department of Mathematics
来源
关键词
Primary 35F10; Secondary 30G35; Initial value problems; Cauchy-Kovalevsky theorem; interior estimates; generalized monogenic functions; associated differential operators;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the initial value problem of the type (0.1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{t} u(t,x) = {\mathcal{L}}u \left( {t,x} \right), \quad u(0,x) = u_0(x)$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in \mathbb{R}^+_0$$\end{document} is the time, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in \mathbb{R}^{n+1}, \, u_{0}(x)$$\end{document} is a generalized monogenic function and the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}$$\end{document}, acting on a Clifford-algebra-valued function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\left({t,x} \right) = \sum\limits_{B} u _{B} \left( {t,x} \right)e_{B}$$\end{document} with real-valued components uB(t, x), is defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}u(t, x) := \sum\limits_{A,B,i} {c_{B,i}^{(A)} \left(t,x \right) \partial _{x_{i}} u_{B} \,\left( t,x \right)e_A }+ \sum\limits_{A,B} {d_{B}^{(A)}} \left( t,x \right)\,u_{B}\left( {t,x} \right)e_{A} + \sum\limits_{A} g_{A} \left( t,x \right)e_{A} $$\end{document} We formulate sufficient conditions on the coefficients of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} under which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} transforms generalized monogenic functions again into generalized monogenic functions. For such an operator the initial value problem (0.1) is solvable for an arbitrary generalized monogenic initial function u0 and the solution is also generalized monogenic for each t.
引用
收藏
页码:427 / 444
页数:17
相关论文
共 50 条