Transport properties and doping evolution of the Fermi surface in cuprates

被引:0
作者
B. Klebel-Knobloch
W. Tabiś
M. A. Gala
O. S. Barišić
D. K. Sunko
N. Barišić
机构
[1] Institute of Solid State Physics,Faculty of Physics and Applied Computer Science
[2] AGH University of Krakow,Department of Physics, Faculty of Science
[3] Institute of Physics,undefined
[4] University of Zagreb,undefined
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Measured transport properties of three representative cuprates are reproduced within the paradigm of two electron subsystems, itinerant and localized. The localized subsystem evolves continuously from the Cu 3d9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document} hole at half-filling and corresponds to the (pseudo)gapped parts of the Fermi surface. The itinerant subsystem is observed as a pure Fermi liquid (FL) with material-independent universal mobility across the doping/temperature phase diagram. The localized subsystem affects the itinerant one in our transport calculations solely by truncating the textbook FL integrals to the observed (doping- and temperature-dependent) Fermi arcs. With this extremely simple picture, we obtain the measured evolution of the resistivity and Hall coefficients in all three cases considered, including LSCO which undergoes a Lifshitz transition in the relevant doping range, a complication which turns out to be superficial. Our results imply that prior to evoking polaronic, quantum critical point, quantum dissipation, or even more exotic scenarios for the evolution of transport properties in cuprates, Fermi-surface properties must be addressed in realistic detail.
引用
收藏
相关论文
共 114 条
  • [1] Bardeen J(1957)Theory of superconductivity Phys. Rev. 108 1175-1204
  • [2] Cooper LN(1986)Possible high Tc superconductivity in the Ba-La-Cu-O system Zeitschrift für Physik B Condens. Matter 64 189-193
  • [3] Schrieffer JR(2022)Stranger than metals Science 377 eabh4273-186
  • [4] Bednorz JG(2015)From quantum matter to high-temperature superconductivity in copper oxides Nature 518 179-1799
  • [5] Müller KA(2022)High-T J. Supercond. Novel Magn. 35 1781-12240
  • [6] Phillips PW(2013) Cuprates: A story of two electronic subsystems Proc. Natl. Acad. Sci. 110 12235-5778
  • [7] Hussey NE(2019)Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors N. J. Phys. 21 113007-955
  • [8] Abbamonte P(2013)Evidence for a universal fermi-liquid scattering rate throughout the phase diagram of the copper-oxide superconductors Proc. Natl. Acad. Sci. 110 5774-831
  • [9] Keimer B(2023)Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates Phys. Rev. B 107 144515-607
  • [10] Kivelson SA(2014)Characterization of two electronic subsystems in cuprates through optical conductivity Phys. Rev. Lett. 113 7005-672