Viability property of jump diffusion processes on manifolds

被引:0
作者
Xue-hong Zhu
Guang-zu Liu
机构
[1] Nanjing University of Aeronautics and Astronautics,School of Science
[2] Nanjing University of Science and Technology,School of Electronic and Optical Engineering
来源
Acta Mathematicae Applicatae Sinica, English Series | 2016年 / 32卷
关键词
viability property; viscosity solution; manifold; 60H10; 49L25;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we give a necessary and sufficient condition for viability property of diffusion processes with jumps on closed submanifolds of Rm. Our result is the system is viable in a closed submanifold K iff the coefficients are tangent to K along K if the equation is in the sense of stratonovich integral and the solution jumps from K to K.
引用
收藏
页码:349 / 354
页数:5
相关论文
共 16 条
  • [1] Aubin J.P.(1990)Stochastic Viability and Invariance Ann. Scu. Norm. di Pisa 27 595-694
  • [2] Da prato G.(1998)Existence of stochastic control under state constraints C. R. Acad. Sci. Paris, t.327 I 17-22
  • [3] Buckdahn R.(1993)Viability for constrained stochastic differential equations Differ. Integ. 6 1394-1414
  • [4] Peng S.(2000)A note on weak viability for controlled diffusions Statist. Probab. Lett. 49 331-336
  • [5] Quincampoix M.(2003)Exact and posible viability for controlled diffusions Statist. Probab. Lett. 62 155-161
  • [6] Rainer C.(1998)A note on viability under distribution constraints Discuss. Math. Probab. Statist. 20 249-260
  • [7] Gautier S.(2008)The viability property of controlled jump diffusion processes Acta. Math. Sinica (English Series) 24 1351-1368
  • [8] Thibault L.(2009)Viability property on Riemannian manifolds C.R. Acad. Sci. Paris, Ser. I 347 1423-1428
  • [9] Mazliak L.(undefined)undefined undefined undefined undefined-undefined
  • [10] Mazliak L.(undefined)undefined undefined undefined undefined-undefined