Tight Semi-nonnegative Matrix Factorization

被引:0
作者
David W. Dreisigmeyer
机构
[1] United States Census Bureau,
[2] Center for Economic Studies,undefined
[3] Department of Electrical and Computer Engineering,undefined
[4] Colorado State University,undefined
来源
Pattern Recognition and Image Analysis | 2020年 / 30卷
关键词
archetypal analysis; nonnegative matrix factorization;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:632 / 637
页数:5
相关论文
共 50 条
  • [21] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Zhang, Ying
    Li, Xiangli
    Jia, Mengxue
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3577 - 3587
  • [22] Adaptive Multi-view Semi-supervised Nonnegative Matrix Factorization
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    Liu, Yanbei
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 435 - 444
  • [23] Network Embedding Using Semi-Supervised Kernel Nonnegative Matrix Factorization
    He, Chaobo
    Zhang, Qiong
    Tang, Yong
    Liu, Shuangyin
    Liu, Hai
    IEEE ACCESS, 2019, 7 : 92732 - 92744
  • [24] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Ying Zhang
    Xiangli Li
    Mengxue Jia
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3577 - 3587
  • [25] Explainable recommendations with nonnegative matrix factorization
    Zhang, Xiaoxia
    Zhou, Xianjun
    Chen, Lu
    Liu, Yanjun
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL3) : S3927 - S3955
  • [26] Online Nonnegative Matrix Factorization With Outliers
    Zhao, Renbo
    Tan, Vincent Y. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (03) : 555 - 570
  • [27] LABEL WALKING NONNEGATIVE MATRIX FACTORIZATION
    Lan, Long
    Guan, Naiyang
    Zhang, Xiang
    Huang, Xuhui
    Luo, Zhigang
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2299 - 2303
  • [28] Smoothed separable nonnegative matrix factorization
    Nadisic, Nicolas
    Gillis, Nicolas
    Kervazo, Christophe
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 174 - 204
  • [29] A multilevel approach for nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) : 1708 - 1723
  • [30] Explainable recommendations with nonnegative matrix factorization
    Xiaoxia Zhang
    Xianjun Zhou
    Lu Chen
    Yanjun Liu
    Artificial Intelligence Review, 2023, 56 : 3927 - 3955