Application of Sumudu Transform in Generalized Fractional Reaction–Diffusion Equation

被引:0
|
作者
Alkahtani B. [1 ]
Gulati V. [2 ]
Kılıçman A. [3 ]
机构
[1] King Saud University, Riyadh
[2] Department of Mathematics, University of Rajasthan, Jaipur, 302055, Rajasthan
[3] Department of Mathematics, University Putra Malaysia, Serdang, 43400 UPM, Selangor
关键词
Fractional diffusion equation; Generalized fractional derivatives; Generalized Mittag-Leffler function; Sumudu transform and Fourier transform;
D O I
10.1007/s40819-015-0066-2
中图分类号
学科分类号
摘要
In this paper we investigate the solution of a generalized nonlinear fractional reaction diffusion equation by the application of Sumudu Transform. © 2015, Springer India Pvt. Ltd.
引用
收藏
页码:387 / 394
页数:7
相关论文
共 50 条
  • [21] On Sumudu Transform Method in Discrete Fractional Calculus
    Jarad, Fahd
    Tas, Kenan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] Analytical solution of the reaction-diffusion equation with space-time fractional derivatives by means of the generalized differential transform method
    Garg, Mridula
    Manohar, Pratibha
    KUWAIT JOURNAL OF SCIENCE, 2013, 40 (01) : 23 - 34
  • [23] Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform
    Agarwal, P.
    Ntouyas, S. K.
    Jain, S.
    Chand, M.
    Singh, G.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1937 - 1942
  • [24] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [25] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [26] On a time fractional reaction diffusion equation
    Ahmad, B.
    Alhothuali, M. S.
    Alsulami, H. H.
    Kirane, M.
    Timoshin, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 199 - 204
  • [27] An application of double Laplace transform and double Sumudu transform
    Kiliçman A.
    Gadain H.E.
    Lobachevskii Journal of Mathematics, 2009, 30 (3) : 214 - 223
  • [28] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308
  • [29] A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION
    Mohanapriya, Arusamy
    Sivakumar, Varudaraj
    Prakash, Periasamy
    KOREAN JOURNAL OF MATHEMATICS, 2021, 29 (04): : 749 - 763
  • [30] Application of the invariant subspace method in conjunction with the fractional Sumudu's transform to a nonlinear conformable time-fractional dispersive equation of the fifth-order
    Hosseini, Kamyar
    Ayati, Zainab
    Ansari, Reza
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (03): : 359 - 369