f(λ,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{(\lambda,\mu)}$\end{document}-statistical convergence of order α̃ for double sequences

被引:0
作者
Mahmut Işik
Yavuz Altin
机构
[1] Harran University,Faculty of Education
[2] Fırat University,Department of Mathematics
关键词
double sequences; statistical convergence; Cesàro summability; 40A05; 40C05; 46A45;
D O I
10.1186/s13660-017-1512-y
中图分类号
学科分类号
摘要
New concepts of fλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\lambda,\mu }$\end{document}-statistical convergence for double sequences of order α̃ and strong fλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\lambda,\mu }$\end{document}-Cesàro summability for double sequences of order α̃ are introduced for sequences of (complex or real) numbers. Furthermore, we give the relationship between the spaces wα˜,02(f,λ,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{\tilde{\alpha },0}^{2} ( f,\lambda,\mu )$\end{document}, wα˜2(f,λ,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{\tilde{\alpha }}^{2} ( f,\lambda,\mu ) $\end{document} and wα˜,∞2(f,λ,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{\tilde{\alpha},\infty }^{2} ( f,\lambda,\mu )$\end{document}. Then we express the properties of strong fλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\lambda,\mu }$\end{document}-Cesàro summability of order β̃ which is related to strong fλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\lambda,\mu }$\end{document}-Cesàro summability of order α̃. Also, some relations between fλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\lambda,\mu }$\end{document}-statistical convergence of order α̃ and strong fλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{\lambda,\mu }$\end{document}-Cesàro summability of order α̃ are given.
引用
收藏
相关论文
共 73 条
  • [1] Steinhaus H(1951)Sur la convergence ordinaire et la convergence asymptotique Colloq. Math. 2 73-74
  • [2] Fast H(1951)Sur la convergence statistique Colloq. Math. 2 241-244
  • [3] Schoenberg IJ(1959)The integrability of certain functions and related summability methods Am. Math. Mon. 66 361-375
  • [4] Šalát T(1980)On statistically convergent sequences of real numbers Math. Slovaca 30 139-150
  • [5] Altin Y(2015)Statistical convergence of order Quaest. Math. 38 505-514
  • [6] Altinok H(2014) for difference sequences J. Appl. Math. 2014 9821-9826
  • [7] Çolak R(2013)Uniform statistical convergence on time scales Appl. Math. Comput. 219 35-47
  • [8] Altin Y(2013)Generalized weighted statistical convergence and application J. Inequal. Appl. 2013 1593-1602
  • [9] Koyunbakan H(2014)On Kuwait J. Sci. Eng. 41 194-198
  • [10] Yilmaz E(2014)-statistical convergence and strongly Filomat 28 301-313