Classifications of Isoparametric Hypersurfaces in Randers Space Forms

被引:0
作者
Qun He
Pei Long Dong
Song Ting Yin
机构
[1] Tongji University,School of Mathematical Sciences
[2] Tongling University,Department of Mathematics and Computer Science
[3] Fujian Province University,Key Laboratory of Applied Mathematics (Putian University)
来源
Acta Mathematica Sinica, English Series | 2020年 / 36卷
关键词
Isoparametric hypersurface; Randers space form; principal curvature; anisotropic sub-manifold; 53C60; 53C40; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give the complete classifications of isoparametric hypersurfaces in Randers space forms. By studying the principal curvatures of anisotropic submanifolds in a Randers space (N, F) with the navigation data (h, W), we find that a Randers space form (N, F, dµBH) and the corresponding Riemannian space (N, h) have the same isoparametric hypersurfaces, but in general, their isoparametric functions are different. We give a necessary and sufficient condition for an isoparametric function of (N, h) to be isoparametric on (N, F, dµBH), from which we get some examples of isoparametric functions.
引用
收藏
页码:1049 / 1060
页数:11
相关论文
共 36 条
  • [1] Bao D W(2004)Zermelo navigation on Riemann manifolds J. Differ. Geom. 66 391-449
  • [2] Robles C(1938)Familles de surfaces isoparametriques dans les espaces a courbure constante Ann. Mat. Pura Appl. 17 177-191
  • [3] Shen Z M(1939)Sur des familles remarquables d’hypersurfaces isoparametriques dans les espaces spheriques Math. Z. 45 335-367
  • [4] Cartan E(1940)Sur des familles dhypersurfaces isoparamétriques des espaces sphériques à 5et à 9 dimensions Revista Univ. Tucuman, Serie A 1 5-22
  • [5] Cartan E(2007)Isoparametric hypersurfaces with four principal curvatures Ann. Math. 166 1-76
  • [6] Cartan E(2011)Isoparametric hypersurfaces with four principal curvatures, II Nagoya Math. J. 204 1-18
  • [7] Cecil T E(2013)Isoparametric hypersurfaces with four principal curvatures, III J. Differ. Geom. 94 469-504
  • [8] Chi Q S(2020)Isoparametric hypersurfaces with four principal curvatures, IV J. Differ. Geom. 115 225-301
  • [9] Jensen G R(1985)Isoparametric hypersurfaces, case Comm. Algebra 13 2299-2368
  • [10] Chi Q S(1981) = 6, Math. Z. 177 479-502