Spectral Theory of the Fermi Polaron

被引:0
作者
M. Griesemer
U. Linden
机构
[1] Universität Stuttgart,Fachbereich Mathematik
来源
Annales Henri Poincaré | 2019年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Fermi polaron refers to a system of free fermions interacting with an impurity particle by means of two-body contact forces. Motivated by the physicists’ approach to this system, the present article describes a general mathematical framework for defining many-body Hamiltonians with two-body contact interactions by means of a renormalization procedure. In the case of the Fermi polaron, the well-known TMS Hamiltonians are shown to emerge. For the Fermi polaron in a box [0,L]2⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,L]^2\subset \mathbb {R}^2$$\end{document}, a novel variational principle, established within the general framework, links the low-lying eigenvalues of the system to the zero modes of a Birman–Schwinger-type operator. It allows us to show, e.g., that the polaron and molecule energies, computed in the physical literature, are indeed upper bounds to the ground state energy of the system.
引用
收藏
页码:1931 / 1967
页数:36
相关论文
共 64 条
  • [1] Becker S(2018)Spectral analysis of the Math. Phys. Anal. Geom. 21 35-240
  • [2] Michelangeli A(2010) fermionic trimer with contact interactions Phys. Rev. Lett. 105 020403-290
  • [3] Ottolini A(2018)Decay of polarons and molecules in a strongly polarized fermi gas Rend. Mat. Appl. 7 229-9173
  • [4] Bruun GM(2006)On inverses of Krein’s Q-functions Phys. Rev. A 74 063628-1849
  • [5] Massignan P(2008)Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations Phys. Rev. Lett. 101 050404-622
  • [6] Cacciapuoti C(2012)Normal state of highly polarized fermi gases: full many-body treatment Rev. Math. Phys. 24 1250017-260
  • [7] Fermi D(2015)Stability for a system of Math. Phys. Anal. Geom. 18 32-38
  • [8] Posilicano A(2015) fermions plus a different particle with zero-range interactions EPL 111 10003-355
  • [9] Chevy F(1994)A class of Hamiltonians for a three-particle fermionic system at unitarity Ann. Inst. H. Poincaré Phys. Théor. 60 253-147
  • [10] Combescot R(2004)Energy lower bound for the unitary J. Phys. A 37 9157-506