On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions

被引:0
作者
Dorota Bród
Anetta Szynal-Liana
Iwona Włoch
机构
[1] Rzeszów University of Technology,
来源
Czechoslovak Mathematical Journal | 2022年 / 72卷
关键词
Jacobsthal number; Jacobsthal-Lucas number; quaternion; generalized quaternion; Binet formula; 11B37; 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.
引用
收藏
页码:1239 / 1248
页数:9
相关论文
共 12 条
[1]  
Çimen C B(2016)On Pell quaternions and Pell-Lucas quaternions Adv. Appl. Clifford Algebr. 26 39-51
[2]  
İpek A(2012)On Fibonacci quaternions Adv. Appl. Clifford Algebr. 22 321-327
[3]  
Halici S(1963)Complex Fibonacci numbers and Fibonacci quaternions Am. Math. Mon. 70 289-291
[4]  
Horadam A F(1988)Jacobsthal and Pell curves Fibonacci Q. 26 77-83
[5]  
Horadam A F(1996)Jacobsthal representation numbers Fibonacci Q. 34 40-54
[6]  
Horadam A F(1969)A note on Fibonacci quaternions Fibonacci Q. 7 225-229
[7]  
Iyer M R(2016)A note on Jacobsthal quaternions Adv. Appl. Clifford Algebr. 26 441-447
[8]  
Szynal-Liana A(2016)The Pell quaternions and the Pell octonions Adv. Appl. Clifford Algebr. 26 435-440
[9]  
Włoch I(2017)On J. Sci. Arts 3 469-476
[10]  
Szynal-Liana A(undefined)-Jacobsthal and undefined undefined undefined-undefined