On generalized local time for the process of brownian motion

被引:1
|
作者
V. V. Bakun
机构
关键词
Brownian Motion; Brownian Process; Bound Borel Function; Kiev Polytechnic Institute; Brownian Function;
D O I
10.1007/BF02529632
中图分类号
学科分类号
摘要
We prove that the functionals \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\delta _\Gamma (B_t ) and \frac{{\partial ^k }}{{\partial x_1^k ...\partial x_d^{k_d } }}\delta _\Gamma (B_t ), k_1 + ... + k_d = k > 1,$$ \end{document} of a d-dimensional Brownian process are Hida distributions, i.e., generalized Wiener functionals. Here, δΓ(·) is a generalization of the δ-function constructed on a bounded closed smooth surface Γ⊂Rd, k≥1 and acting on finite continuous functions φ(·) in Rd according to the rule \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\delta _\Gamma ,\varphi ) : = \int\limits_\Gamma {\varphi (x} )\lambda (dx),$$ \end{document} where ι(·) is a surface measure on Γ.
引用
收藏
页码:173 / 182
页数:9
相关论文
共 50 条
  • [41] On the increments of the principal value of Brownian local time
    Csáki, E
    Hu, YY
    ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 925 - 947
  • [42] On the exponential integrability of the derivative of intersection and self-intersection local time for Brownian motion and related processes
    Das, Kaustav
    Markowsky, Gregory
    Wu, Binghao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 183
  • [43] Use of Neural Networks and Brownian Motion in Local Posistioning Systems
    Rutecki, Maciej
    Kacprzak, Tomasz
    ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, CONFERENCE PROCEEDINGS, 2008, : 273 - 276
  • [44] Local and global maxima for the expectation of the lifetime of a Brownian motion on the disk
    Bodo Dittmar
    Journal d'Analyse Mathématique, 2008, 104
  • [45] NMR signals within the generalized Langevin model for fractional Brownian motion
    Lisy, Vladimir
    Tothova, Jana
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 : 200 - 208
  • [46] A generalized stochastic differential utility driven by G-Brownian motion
    Qian Lin
    Dejian Tian
    Weidong Tian
    Mathematics and Financial Economics, 2020, 14 : 547 - 576
  • [47] Brownian motion of classical spins: Anomalous dissipation and generalized Langevin equation
    Bandyopadhyay, Malay
    Jayannavar, A. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (27):
  • [48] Predicting the Time of the Ultimate Maximum for Brownian Motion with Drift
    du Toit, Jacques
    Peskir, Goran
    MATHEMATICAL CONTROL THEORY AND FINANCE, 2008, : 95 - 112
  • [49] Exact time evolution in harmonic quantum Brownian motion
    Gaioli, FH
    Garcia-Alvarez, ET
    PHYSICA A, 1999, 264 (3-4): : 338 - 344
  • [50] Instantaneous Control of Brownian Motion with a Positive Lead Time
    Xu, Zhen
    Zhang, Jiheng
    Zhang, Rachel Q.
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (03) : 943 - 965