Very weak solutions to the Navier–Stokes system in general unbounded domains

被引:0
作者
Reinhard Farwig
Paul Felix Riechwald
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] International Research Training Group,undefined
[3] (IRTG 1529) Darmstadt-Tokyo,undefined
来源
Journal of Evolution Equations | 2015年 / 15卷
关键词
35B65; 76D05; 76D03; Navier–Stokes equations; Very weak solutions; General unbounded domains; Spaces ;
D O I
暂无
中图分类号
学科分类号
摘要
We consider very weak instationary solutions u of the Navier–Stokes system in general unbounded domains Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^n}$$\end{document} , n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 3}$$\end{document} , with smooth boundary, i.e., u solves the Navier–Stokes system in the sense of distributions and u∈Lr(0,T;L~q(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ u \in L^r (0,T;\tilde{L}^q(\Omega))}$$\end{document} where 2r+nq=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{2}{r} + \frac{n}{q} =1}$$\end{document} , 2 < r < ∞. Solutions of this class have no differentiability properties and in general are not weak solutions in the sense of Leray–Hopf. However, they lie in the so-called Serrin class Lr(0,T;L~q(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^r(0,T;\tilde{L}^q(\Omega))}$$\end{document} yielding uniqueness. To deal with the unboundedness of the domain, we work in the spaces L~q(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{L}^q(\Omega)}$$\end{document} (instead of Lq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^q(\Omega)}$$\end{document}) defined as Lq∩L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^q \cap L^2}$$\end{document} when q≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q \geq 2}$$\end{document} but as Lq+ L2 when 1 < q < 2. The proofs are strongly based on duality arguments and the properties of the spaces L~q(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{L}^q(\Omega)}$$\end{document} .
引用
收藏
页码:253 / 279
页数:26
相关论文
共 33 条
  • [1] Amann H.(2000)On the strong solvability of the Navier–Stokes equations J. Math. Fluid Mech. 2 16-98
  • [2] Amrouche Ch.(1994)Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension Czech. Math. J. 44 109-140
  • [3] Girault V.(1986)Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries Rend. Sem. Mat. Fis. Milano 56 125-138
  • [4] Bogovskij M.E.(2006)A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data J. Math. Fluid Mech. 8 423-444
  • [5] Maslennikova V.N.(2005)An Acta Math. 195 21-53
  • [6] Farwig R.(2007)-approach to Stokes and Navier–Stokes equations in general domains J. Math. Soc. Japan 59 127-150
  • [7] Galdi G.P.(2007)Very weak solutions of the Navier–Stokes equations in exterior domains with nonhomogeneous data Arch. Math. 88 239-248
  • [8] Sohr H.(2009)On the Helmholtz decomposition in general unbounded domains Hokkaido Math. J. 38 111-136
  • [9] Farwig R.(2009)On the Stokes operator in general unbounded domains Math. Ann. 345 631-642
  • [10] Kozono H.(2010)Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations Nonlinear Anal., Ser. A: Theory and Methods 73 73, 1459-1465