Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution

被引:0
作者
Stephen J. Wright
机构
[1] Argonne National Laboratory,Mathematics and Computer Science Division
来源
Computational Optimization and Applications | 1998年 / 11卷
关键词
nonlinear programming; sequential quadratic programming; degenerate solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a slight modification of the well-known sequential quadratic programming method for nonlinear programming that attains superlinear convergence to a primal-dual solution even when the Jacobian of the active constraints is rank deficient at the solution. We show that rapid convergence occurs even in the presence of the roundoff errors that are introduced when the algorithm is implemented in floating-point arithmetic.
引用
收藏
页码:253 / 275
页数:22
相关论文
共 50 条
  • [1] Superlinear convergence of a stabilized SQP method to a degenerate solution
    Wright, SJ
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1998, 11 (03) : 253 - 275
  • [2] A stabilized SQP method: superlinear convergence
    Gill, Philip E.
    Kungurtsev, Vyacheslav
    Robinson, Daniel P.
    MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 369 - 410
  • [3] A stabilized SQP method: superlinear convergence
    Philip E. Gill
    Vyacheslav Kungurtsev
    Daniel P. Robinson
    Mathematical Programming, 2017, 163 : 369 - 410
  • [4] A stabilized SQP method: global convergence
    Gill, Philip E.
    Kungurtsev, Vyacheslav
    Robinson, Daniel P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (01) : 407 - 443
  • [5] On the superlinear local convergence of a filter-SQP method
    Ulbrich, S
    MATHEMATICAL PROGRAMMING, 2004, 100 (01) : 217 - 245
  • [6] On the superlinear local convergence of a filter-SQP method
    Stefan Ulbrich
    Mathematical Programming, 2004, 100 : 217 - 245
  • [7] Loss of superlinear convergence for an SQP-type method with conic constraints
    Diehl, M
    Jarre, F
    Vogelbusch, CH
    SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (04) : 1201 - 1210
  • [8] Convergence of the BFGS-SQP method for degenerate problems
    Liu, Taowen
    Li, Donghui
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) : 927 - 944
  • [9] Numerical behavior of a stabilized SQP method for degenerate NLP problems
    Mostafa, ESME
    Vicente, LN
    Wright, SJ
    GLOBAL OPTIMIZATION AND CONSTRAINT SATISFACTION, 2003, 2861 : 123 - 141
  • [10] A GLOBALLY CONVERGENT STABILIZED SQP METHOD
    Gill, Philip E.
    Robinson, Daniel P.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 1983 - 2010