Positive solutions for semipositone (p,N)-Laplacian problems with critical Trudinger–Moser nonlinearities

被引:0
|
作者
Yuanyuan Zhang
Yang Yang
机构
[1] Jiangnan University,School of Science
来源
Revista Matemática Complutense | 2022年 / 35卷
关键词
(; )-Laplacian; Critical Trudinger–Moser nonlinearities; Variational methods; Positive solutions; Semipositone problems; 35J35; 35D30; 35E05; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the existence of positive solutions for semipositone (p,N)-Laplacian problems with critical Trudinger–Moser nonlinearities in a bounded domain: -Δpu-ΔNu=λuN-1eβuN′-μ,inΩ;u>0,inΩ;u=0,on∂Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{clll} -\varDelta _p u-\varDelta _N u=\lambda u^{N-1}e^{\beta u^{N'}} - \mu , &{} \text {in}\,\varOmega ;\\ u>0, &{} \text {in}\,\varOmega ;\\ u=0,&{} \text {on}\,\partial \varOmega . \end{array} \right. \end{aligned}$$\end{document}We obtain the positive solutions by combining variational methods with regularity arguments. And the main novelty here is to obtain a uniform C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{1,\alpha }$$\end{document} priori estimate of the weak solution. Our arguments can be also adapted to seek positive solutions of more general semipositone problems.
引用
收藏
页码:133 / 146
页数:13
相关论文
共 50 条
  • [21] A class of semipositone p-Laplacian problems with a critical growth reaction term
    Perera, Kanishka
    Shivaji, Ratnasingham
    Sim, Inbo
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 516 - 525
  • [22] Existence of Solutions for Fractional (p, q)-Laplacian Problems Involving Critical Hardy-Sob olev Nonlinearities
    Cui, Xuehui
    Yang, Yang
    TAIWANESE JOURNAL OF MATHEMATICS, 2024, 28 (05): : 947 - 967
  • [23] Positive Solutions for a Class of Semipositone Problems
    Matehkolaee, Mahmood Jaafari
    MATEMATIKA, 2012, 28 (01) : 49 - 52
  • [24] Coupled elliptic systems in RN with (p, N) Laplacian and critical exponential nonlinearities
    Chen, Sitong
    Fiscella, Alessio
    Pucci, Patrizia
    Tang, Xianhua
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 201 (201)
  • [25] Existence of positive solutions for a parameter fractional p-Laplacian problem with semipositone nonlinearity
    Lopera, Emer
    Lopez, Camila
    Vidal, Raul E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
  • [26] Positive solutions for the Robin p-Laplacian problem with competing nonlinearities
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (01) : 31 - 56
  • [27] MULTIPLICITY THEOREMS FOR SEMIPOSITONE p-LAPLACIAN PROBLEMS
    Shang, Xudong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [28] MULTIPLE SOLUTIONS OF A p(x)-LAPLACIAN EQUATION INVOLVING CRITICAL NONLINEARITIES
    Liang, Yuan
    Wu, Xianbin
    Zhang, Qihu
    Zhao, Chunshan
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2055 - 2082
  • [29] Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities
    Tao, Mengfei
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1332 - 1351
  • [30] On p(z)-Laplacian System Involving Critical Nonlinearities
    Aberqi, Ahmed
    Bennouna, Jaouad
    Benslimane, Omar
    Ragusa, Maria Alessandra
    JOURNAL OF FUNCTION SPACES, 2022, 2022