The Steiner Subratio of Five Points on a Plane and Four Points in Three-Dimensional Space

被引:0
作者
Ovsyannikov Z. [1 ]
机构
[1] Moscow State University, Moscow
关键词
Minimal Span Tree; Dimensional Euclidean Space; Regular Triangle; Outer Vertex; Arbitrary Tree;
D O I
10.1007/s10958-014-2178-3
中图分类号
学科分类号
摘要
The Steiner subratio is a fundamental characteristic of a metric space, introduced by A. Ivanov and A. Tuzhilin. This work tries to estimate this subratio for five-point sets on a plane and four-point sets in three-dimensional space. © 2014, Springer Science+Business Media New York.
引用
收藏
页码:864 / 872
页数:8
相关论文
共 3 条
[1]  
Du D.-Z., Hwang F.K., Yao E.Y., The Steiner ratio conjecture is true for five points, J. Combin. Theory Ser. A, 38, pp. 230-240, (1985)
[2]  
Eremin A.Y., A formula for the weight of a minimal filling of a finite metric space, Mat. Sb., 204, 9, pp. 51-72, (2013)
[3]  
Ivanov A.O., Tuzhilin A.A., One-dimensional Gromov minimal filling problem, Sb. Math., 203, 5, pp. 677-726, (2012)