Using deep learning to predict human decisions and using cognitive models to explain deep learning models

被引:0
|
作者
Matan Fintz
Margarita Osadchy
Uri Hertz
机构
[1] University of Haifa,Department of Computer Science
[2] University of Haifa,Department of Cognitive Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep neural networks (DNNs) models have the potential to provide new insights in the study of cognitive processes, such as human decision making, due to their high capacity and data-driven design. While these models may be able to go beyond theory-driven models in predicting human behaviour, their opaque nature limits their ability to explain how an operation is carried out, undermining their usefulness as a scientific tool. Here we suggest the use of a DNN model as an exploratory tool to identify predictable and consistent human behaviour, and using explicit, theory-driven models, to characterise the high-capacity model. To demonstrate our approach, we trained an exploratory DNN model to predict human decisions in a four-armed bandit task. We found that this model was more accurate than two explicit models, a reward-oriented model geared towards choosing the most rewarding option, and a reward-oblivious model that was trained to predict human decisions without information about rewards. Using experimental simulations, we were able to characterise the exploratory model using the explicit models. We found that the exploratory model converged with the reward-oriented model’s predictions when one option was clearly better than the others, but that it predicted pattern-based explorations akin to the reward-oblivious model’s predictions. These results suggest that predictable decision patterns that are not solely reward-oriented may contribute to human decisions. Importantly, we demonstrate how theory-driven cognitive models can be used to characterise the operation of DNNs, making DNNs a useful explanatory tool in scientific investigation.
引用
收藏
相关论文
共 50 条
  • [21] Phishing Website Detection Using Deep Learning Models
    Zara, Ume
    Ayyub, Kashif
    Khan, Hikmat Ullah
    Daud, Ali
    Alsahfi, Tariq
    Ahmad, Saima Gulzar
    IEEE ACCESS, 2024, 12 : 167072 - 167087
  • [22] Classification of Lung Diseases Using Deep Learning Models
    Zak, Matthew
    Krzyzak, Adam
    COMPUTATIONAL SCIENCE - ICCS 2020, PT III, 2020, 12139 : 621 - 634
  • [23] Strawberry Ripeness Detection Using Deep Learning Models
    Mi, Zhiyuan
    Yan, Wei Qi
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (08)
  • [24] Poultry diseases diagnostics models using deep learning
    Machuve, Dina
    Nwankwo, Ezinne
    Mduma, Neema
    Mbelwa, Jimmy
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [25] Classification of Animal Behaviour Using Deep Learning Models
    Sowmya, M.
    Balasubramanian, M.
    Vaidehi, K.
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2024, 13
  • [26] Diabetic Retinopathy Detection Using Deep Learning Models
    Kanakaprabha, S.
    Radha, D.
    Santhanalakshmi, S.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 75 - 90
  • [27] Malware Prediction Using Tabular Deep Learning Models
    Alzu'bi, Ahmad
    Abuarqoub, Abdelrahman
    Abdullah, Mohammad
    Abu Agolah, Rami
    Al Ajlouni, Moayyad
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 379 - 389
  • [28] A Review of Plant Classification Using Deep Learning Models
    Karnan, A.
    Ragupathy, R.
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 113 - 125
  • [29] Arabic text classification using deep learning models
    Elnagar, Ashraf
    Al-Debsi, Ridhwan
    Einea, Omar
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (01)
  • [30] Forest road detection using deep learning models
    Caliskan, Erhan
    Sevim, Yusuf
    GEOCARTO INTERNATIONAL, 2022, 37 (20) : 5875 - 5890