Mixed equilibrium problems on Hadamard manifolds

被引:8
作者
Jana S. [1 ]
Nahak C. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur
来源
Rendiconti del Circolo Matematico di Palermo (1952 -) | 2016年 / 65卷 / 1期
关键词
Equilibrium problems; Hadamard manifolds; KKM mappings; Monotonicity; Variational inequalities;
D O I
10.1007/s12215-015-0221-y
中图分类号
学科分类号
摘要
In this paper we study the existence of solutions of mixed equilibrium problems on Hadamard manifolds. We also introduce the implicit and explicit algorithms to solve these problems. Under reasonable assumptions, we show that the sequence generated by both implicit and explicit algorithms converges to a solution of mixed equilibrium problems, whenever it exists. Moreover our results generalize some corresponding results, existing in the literature. © 2015, Springer-Verlag Italia.
引用
收藏
页码:97 / 109
页数:12
相关论文
共 22 条
[1]  
Bridson M., Haefliger A., Metric Spaces of Non-positive Curvature, (1999)
[2]  
Bianchi M., Schaible S., Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90, pp. 31-43, (1996)
[3]  
Bianchi M., Schaible S., Equilibrium problem under generalized convexity and generalized monotonicity, J. Glob. Optim., 30, pp. 121-134, (2004)
[4]  
Blum E., Oettli W., From optimization and variational inequilities to equilibrium problems, Math. Stud. IMS, 63, pp. 123-145, (1994)
[5]  
Colao V., Lopez G., Marino G., Martin-Marquez V., Equilibrium problems in Hadamard manifolds, J. Math. Anal. Appl., 388, pp. 61-77, (2012)
[6]  
Ferreira O.P., Oliveira P.R., Proximal point algorithm on Riemannian manifolds, Optimization, 51, pp. 257-270, (2002)
[7]  
Hadjisavvas N., Schaible S., Quasimonotone variational inequalities in Banach spaces, J. Optim. Theory Appl., 90, pp. 95-111, (1996)
[8]  
Li X.B., Huang N.J., Generalized vector quasi-equilibrium problems on Hadamard manifolds. Optim, Lett, (2013)
[9]  
Li C., Lopez G., Martin-Marquez V., Monotone vector fields and the proximal point algorithm on Hadamard manifolds, J. Lond. Math. Soc., 79, 2, pp. 663-683, (2009)
[10]  
Nemeth S.Z., Geodesic monotone vector fields, Lobachevskii, J. Math., 5, pp. 13-28, (1999)