Self-Supervised Convolutional Subspace Clustering Network with the Block Diagonal Regularizer

被引:0
作者
Maoshan Liu
Yan Wang
Zhicheng Ji
机构
[1] Jiangnan University,Engineering Research Center of Internet of Things Technology Applications, Ministry of Education
来源
Neural Processing Letters | 2021年 / 53卷
关键词
Subspace clustering; -block diagonal regularizer; Subspace structured regularizer; Deep convolutional network;
D O I
暂无
中图分类号
学科分类号
摘要
The practical visual data do not necessarily lie in linear subspaces, so deep convolutional subspace clustering network is proposed to segment the practical visual data into multiple categories accurately. The original convolutional subspace clustering network contains the stacked convolutional encoder module, the stacked convolutional decoder module and the self-expression module. We firstly alter the self-expression module, i.e., add a new k-block diagonal regularizer to the weights of the self-expression module. It means that the ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document} or ℓ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2$$\end{document} regularizer is abandoned. The k-block diagonal regularizer is proposed to directly pursue the block diagonal matrix, so introducing this regularizer to the self-expression module will make the learned representation matrix conform with the block diagonal matrix better. Secondly, we add a new spectral clustering module to this convolutional subspace clustering network, in which the spectral clustering result is used to supervise the learning of the representation matrix. This subspace structured regularizer is introduced to the spectral clustering module, which further refines the learned representation matrix. Experimental results on three challenging datasets have demonstrated that the proposed deep learning based subspace clustering method achieves the better clustering effect over the state-of-the-arts.
引用
收藏
页码:3849 / 3875
页数:26
相关论文
共 40 条
  • [1] Self-Supervised Convolutional Subspace Clustering Network with the Block Diagonal Regularizer
    Liu, Maoshan
    Wang, Yan
    Ji, Zhicheng
    NEURAL PROCESSING LETTERS, 2021, 53 (06) : 3849 - 3875
  • [2] Convolutional Subspace Clustering Network With Block Diagonal Prior
    Zhang, Junjian
    Li, Chun-Guang
    Du, Tianming
    Zhang, Honggang
    Guo, Jun
    IEEE ACCESS, 2020, 8 : 5723 - 5732
  • [3] Self-supervised deep geometric subspace clustering network
    Baek, Sangwon
    Yoon, Gangjoon
    Song, Jinjoo
    Yoon, Sang Min
    INFORMATION SCIENCES, 2022, 610 : 235 - 245
  • [4] Self-Supervised Embedding for Subspace Clustering
    Zhu, Wenjie
    Peng, Bo
    Chen, Chunchun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3687 - 3691
  • [5] Joint correntropy metric weighting and block diagonal regularizer for robust multiple kernel subspace clustering
    Yang, Chao
    Ren, Zhenwen
    Sun, Quansen
    Wu, Mingna
    Yin, Maowei
    Sun, Yuan
    INFORMATION SCIENCES, 2019, 500 : 48 - 66
  • [6] Subspace Clustering by Block Diagonal Representation
    Lu, Canyi
    Feng, Jiashi
    Lin, Zhouchen
    Mei, Tao
    Yan, Shuicheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) : 487 - 501
  • [7] Self-Supervised Graph Convolutional Network for Multi-View Clustering
    Xia, Wei
    Wang, Qianqian
    Gao, Quanxue
    Zhang, Xiangdong
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3182 - 3192
  • [8] Self-Supervised Deep Multi-View Subspace Clustering
    Sun, Xiukun
    Cheng, Miaomiao
    Min, Chen
    Jing, Liping
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 1001 - 1016
  • [9] Active Block Diagonal Subspace Clustering
    Xie, Ziqi
    Wang, Lihong
    IEEE ACCESS, 2021, 9 (09): : 83976 - 83992
  • [10] Block Diagonal Least Squares Regression for Subspace Clustering
    Fan, Lili
    Lu, Guifu
    Liu, Tao
    Wang, Yong
    ELECTRONICS, 2022, 11 (15)