Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping

被引:0
|
作者
Sona Ghadimi
Daniel A. Auger
Xue Feng
Changyu Sun
Craig H. Meyer
Kenneth C. Bilchick
Jie Jane Cao
Andrew D. Scott
John N. Oshinski
Daniel B. Ennis
Frederick H. Epstein
机构
[1] University of Virginia,Department of Biomedical Engineering
[2] University of Virginia Health System,Department of Medicine
[3] St. Francis Hospital,Department of Cardiology
[4] The Royal Brompton Hospital,Cardiovascular Magnetic Resonance Unit
[5] Emory University School of Medicine,Department of Radiology and Imaging Sciences
[6] Stanford University,Department of Radiology
关键词
DENSE; Cardiac MRI; Machine learning; Deep learning; Phase unwrapping; Strain analysis; Segmental strain; Global strain; Heart;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping
    Ghadimi, Sona
    Auger, Daniel A.
    Feng, Xue
    Sun, Changyu
    Meyer, Craig H.
    Bilchick, Kenneth C.
    Cao, Jie Jane
    Scott, Andrew D.
    Oshinski, John N.
    Ennis, Daniel B.
    Epstein, Frederick H.
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2021, 23 (01)
  • [2] Fully-automated deep-learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases
    Karimi-Bidhendi, Saeed
    Arafati, Arghavan
    Cheng, Andrew L.
    Wu, Yilei
    Kheradvar, Arash
    Jafarkhani, Hamid
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2020, 22 (01)
  • [3] Fully-Automated Left Ventricle Segmentation Using a Dilated and Adversarial Deep Learning Architecture
    Yao, Heming
    Gryak, Jonathan
    Derksen, Harm
    Attili, Anil K.
    Nallamothu, Brahmajee K.
    Najarian, Kayvan
    CIRCULATION, 2018, 138
  • [4] Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases
    Saeed Karimi-Bidhendi
    Arghavan Arafati
    Andrew L. Cheng
    Yilei Wu
    Arash Kheradvar
    Hamid Jafarkhani
    Journal of Cardiovascular Magnetic Resonance, 22
  • [5] Fully-Automated Drusen Segmentation in OCT using Deep Learning with Pyramid U-net
    Grechenig, Christoph
    Asgari, Fatemeh
    Gerendas, Bianca S.
    Waldstein, Sebastian M.
    Schlanitz, Ferdinand Georg
    Baratsits, Magdalena
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [6] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Trebeschi, Stefano
    van Griethuysen, Joost J. M.
    Lambregts, Doenja M. J.
    Lahaye, Max J.
    Parmer, Chintan
    Bakers, Frans C. H.
    Peters, Nicky H. G. M.
    Beets-Tan, Regina G. H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2017, 7
  • [7] Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images
    Podda, Alessandro Sebastian
    Balia, Riccardo
    Barra, Silvio
    Carta, Salvatore
    Fenu, Gianni
    Piano, Leonardo
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [8] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Stefano Trebeschi
    Joost J. M. van Griethuysen
    Doenja M. J. Lambregts
    Max J. Lahaye
    Chintan Parmar
    Frans C. H. Bakers
    Nicky H. G. M. Peters
    Regina G. H. Beets-Tan
    Hugo J. W. L. Aerts
    Scientific Reports, 7
  • [9] Fully-Automated Ischemic Brain Infarct Volumetric Segmentation in Diffusion Weighted MR using Deep Learning
    Chang, Ken
    Brown, James
    Beers, Andrew
    Rosen, Bruce
    Kalpathy-Cramer, Jayashree
    Ay, Hakan
    STROKE, 2019, 50
  • [10] Fully-automated spike detection and dipole analysis of epileptic magnetoencephalograms using deep learning
    Hirata, Masayuki
    Hirano, Ryoji
    Emura, Takuto
    Nakata, Otoichi
    Nakashima, Toshiharu
    Asai, Miyako
    Shimono, Kuriko
    Kishima, Haruhiko
    EPILEPSIA, 2021, 62 : 18 - 19