Existence and uniqueness of weak solutions for a class of fractional superdiffusion equations

被引:0
|
作者
Meilan Qiu
Liquan Mei
Ganshang Yang
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Yunnan Nationalities University,Department of Mathematics
[3] Yunnan Normal University,Institute of Mathematics
关键词
fractional (linear or nonlinear) superdiffusion equation; fractional drift superdiffusion equation; Schauder’s fixed point theorem; Arzelà-Ascoli compactness theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence and uniqueness of weak solutions for a class of fractional superdiffusion equations with initial-boundary conditions. For a multidimensional fractional drift superdiffusion equation, we just consider the simplest case with divergence-free drift velocity u∈L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u \in L^{2}(\Omega)$\end{document} only depending on the spatial variable x. Finally, exploiting the Schauder fixed point theorem combined with the Arzelà-Ascoli compactness theorem, we obtain the existence and uniqueness of weak solutions in the standard Banach space C([0,T];H01(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C([0,T]; H_{0}^{1}(\Omega))$\end{document} for a class of fractional superdiffusion equations.
引用
收藏
相关论文
共 50 条
  • [21] EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NABLA FRACTIONAL DIFFERENCE EQUATIONS
    Mert, Raziye
    Peterson, Allan
    Abdeljawad, Thabet
    Erbe, Lynn
    DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (01): : 183 - 194
  • [22] EXISTENCE AND UNIQUENESS OF SOLUTIONS TO IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS
    Benchohra, Mouffak
    Slimani, Boualem Attou
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [23] On Existence and Uniqueness of Solutions for Semilinear Fractional Wave Equations
    Yavar Kian
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2017, 20 (1) : 117 - 138
  • [24] Existence and uniqueness of positive mild solutions for a class of fractional evolution equations on infinite interval
    Chen, Yi
    Lv, Zhanmei
    Zhang, Liang
    BOUNDARY VALUE PROBLEMS, 2017,
  • [25] Existence and uniqueness of solutions for impulsive fractional differential equations
    Rehman, Mujeeb Ur
    Eloe, Paul W.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 224 : 422 - 431
  • [26] On the Existence and Uniqueness of Solutions for Local Fractional Differential Equations
    Jafari, Hossein
    Jassim, Hassan Kamil
    Al Qurashi, Maysaa
    Baleanu, Dumitru
    ENTROPY, 2016, 18 (11)
  • [27] ON EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR SEMILINEAR FRACTIONAL WAVE EQUATIONS
    Kian, Yavar
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (01) : 117 - 138
  • [28] UNIQUENESS OF WEAK SOLUTIONS TO THE BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION
    Ji, Ruihong
    Li, Dan
    Wu, Jiahong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1531 - 1548
  • [29] Existence and uniqueness of positive solutions for fractional differential equations
    Zhu, Tao
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [30] Existence and Uniqueness of Weak Solutions to Variable-Order Fractional Laplacian Equations with Variable Exponents
    Guo, Yating
    Ye, Guoju
    JOURNAL OF FUNCTION SPACES, 2021, 2021