Compactness of Fractional Type Integral Operators on Spaces of Homogeneous Type

被引:0
作者
Kokilashvili V. [1 ]
Meskhi A. [1 ,2 ]
机构
[1] A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, 2, Merab Aleksidze II Lane, Tbilisi
[2] School of Mathematics, Kutaisi International University, 5th Lane, K Building, Kutaisi
关键词
D O I
10.1007/s10958-022-06202-2
中图分类号
学科分类号
摘要
For a space (X, d, μ) of homogeneous type and a fractional type integral operator Kα defined on (X, d, μ) we find a necessary and sufficient condition on the exponent q governing the compactness of Kαfrom Lp(X) to Lq(X), where 1 ≤ p, q < ∞ and μ(X) < ∞. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:368 / 375
页数:7
相关论文
共 12 条
[1]  
Adams D.R., Hedberg L.I., Function Spaces and Potential Theory, (1996)
[2]  
Maz'ya V.G., Sobolev Spaces, (1985)
[3]  
Kransnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevskii P.E., Integral Operators in Spaces of Summable Functions, (1976)
[4]  
Kokilashvili V., Mastylo M., Meskhi A., Compactness criteria for fractional integral operators, Fract. Calc. Appl. Anal., 22, 5, pp. 1259-1283, (2019)
[5]  
Kokilashvili V., Meskhi A., Fractional integrals on measure spaces, Fract. Calc. Appl. Anal., 4, 1, pp. 1-24, (2001)
[6]  
Kokilashvili V., Weighted estimates for classical integral operators, Teubner-Texte Math., 119, pp. 86-103, (1990)
[7]  
Macias R.A., Segovia C., Lipschitz functions on spaces of homogeneous type, Adv. Math., 33, pp. 257-270, (1979)
[8]  
Coifman R.R., Weiss G., Analyse harmonique non-commutative sur certains espaces homogenes, Lect. Notes Math., 242, (1971)
[9]  
Folland G.B., Stein E.M., Hardy Spaces on Homogeneous Groups, (1982)
[10]  
Stromberg J.-O., Torchinsky A., Weighted Hardy spaces, Lect. Notes Math., (1989)