On the Convergence of Solutions of Singularly Perturbed Boundary-Value Problems for the Laplace Operator

被引:0
作者
M. Yu. Planida
机构
[1] Bashkir State Pedagogical University,
来源
Mathematical Notes | 2002年 / 71卷
关键词
Laplace operator; boundary-value problem; singular perturbation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the convergence of solutions and eigenvalues of singularly perturbed boundary-value problems for the Laplace operator in three-dimensional bounded domains with thin tubes cut out and variation of boundary conditions on narrow strips.
引用
收藏
页码:794 / 803
页数:9
相关论文
共 8 条
[1]  
Samarskii A. A.(1948)On the influence of fixing of boundary points on eigenvalues of closed volumes Dokl. Akad. Nauk SSSR 63 631-634
[2]  
Il' in A. M.(1977)A boundary-value problem for a second-order elliptic equation in a domain with a narrow aperture window. II. Domain with a small aperture Mat. Sb. 103 265-284
[3]  
Fedoryuk M. V.(1980)Dirichlet problem for the Laplace operator ouside of a thin body with axial symmetry Transactions of S. L. Sobolev Seminar [in Russian] 1 113-131
[4]  
Ozawa S.(1981)Singular variation of domains and eigenvalues of the Laplacian Duke Math. J. 48 767-778
[5]  
Maz'ya V. G.(1984)Asymptotic expansions of eigenvalues of boundary-value problems for the Laplace operator in domains with small apertures Izv. Akad. Nauk SSSR Ser. Mat. 48 347-371
[6]  
Nazarov B. A.(1986)Asymptotics of the eigenvalue of a singularly perturbed elliptic problem with a small parameter in the boundary condition Differentsial'nye Uravneniya 22 640-652
[7]  
Plamenevskii S. A.(undefined)undefined undefined undefined undefined-undefined
[8]  
Gadyl'shin R. R.(undefined)undefined undefined undefined undefined-undefined