Comparison of the effects of imputation methods for missing data in predictive modelling of cohort study datasets

被引:0
作者
JiaHang Li
ShuXia Guo
RuLin Ma
Jia He
XiangHui Zhang
DongSheng Rui
YuSong Ding
Yu Li
LeYao Jian
Jing Cheng
Heng Guo
机构
[1] Shihezi University School of Medicine,Department of Public Health
[2] the Xinjiang Production and Construction Corps,Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security
来源
BMC Medical Research Methodology | / 24卷
关键词
Missing data; Imputation methods; Cohort study; Cardiovascular disease; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 129 条
[1]  
Heymans MW(2022)Handling missing data in clinical research J Clin Epidemiol 151 185-188
[2]  
Twisk JWR(2012)The prevention and treatment of missing data in clinical trials N Engl J Med 367 1355-1360
[3]  
Little RJ(2019)Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry Health Qual Life Outcomes 17 106-229
[4]  
D'Agostino R(2022)Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review J Clin Epidemiol 142 218-732
[5]  
Cohen ML(2021)A survey on missing data in machine learning J Big Data 8 140-162
[6]  
Dickersin K(2012)Missing data: a systematic review of how they are reported and handled Epidemiology (Cambridge, Mass) 23 729-115
[7]  
Emerson SS(2014)On the joys of missing data J Pediatr Psychol 39 151-576
[8]  
Farrar JT(2010)Missing data imputation using statistical and machine learning methods in a real breast cancer problem Artif Intell Med 50 105-2664
[9]  
Frangakis C(2022)Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry Comput Biol Med 145 105449-322
[10]  
Hogan JW(2019)How handling missing data may impact conclusions: a comparison of six different imputation methods for categorical questionnaire data SAGE Open Med 7 2050312118822912-2700