Nonlinear A-Dirac Equations

被引:0
作者
Craig A. Nolder
机构
[1] Florida State University,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2011年 / 21卷
关键词
Nonlinear Dirac equations; Caccioppoli estimate; global integrability;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a study of solutions to nonlinear Dirac equations, in domains in Euclidean space, which are generalizations of the Clifford Laplacian as well as elliptic equations in divergence form. A Caccioppoli estimate is used to prove a global integrability theorem for the image of a solution under the Euclidean Dirac operator. Oscillation spaces for Clifford valued functions are used which generalize the usual spaces of bounded mean oscillation, local Lipschitz continuity or local order of growth of real-valued functions.
引用
收藏
页码:429 / 440
页数:11
相关论文
共 25 条
  • [1] Aronsson G.(1986)Construction of singular solutions to the p-harmonic equation and its limit equation for Manuscripta Math. 56 135-158
  • [2] Aronsson G.(1988) =  ∞ Manuscripta Math. 61 79-101
  • [3] Astala K.(1991)On certain p-harmonic functions in the plane J. Anal. Math. 57 203-220
  • [4] Koskela P.(2006)Quasiconformal mappings and global integrability of the derivative Math Z. 254 409-432
  • [5] Chen Q.(2005)Dirac-harmonic maps Math Z. 251 61-84
  • [6] Jost J.(2008)Regularity theorems and energy identities for Dirac-harmonic maps Ann. Global Anal. Geom. 33 253-270
  • [7] Li J.Y.(1994)Nonlinear Dirac equations on Riemann surfaces Nonlinear Anal. 23 899-909
  • [8] Wang G.F.(1998)Global integrability of the gradients of solutions to partial diffierential equations Ann. Acad. Sci. Fenn. Math. 23 205-224
  • [9] Chen Q.(1964)The quasihyperbolic metric, growth and John domains Proc. Amer. Math. Soc. 15 717-721
  • [10] Jost J.(1987)Mean oscillation over cubes and Hölder continuity Exposition Math. 5 17-40