Dugdale plastic zone model of a penny-shaped crack in a magnetoelectroelastic cylinder under magnetoelectroelastic loads

被引:0
作者
L. L. Liu
W. J. Feng
机构
[1] Shijiazhuang Tiedao University,Department of Engineering Mechanics
来源
Archive of Applied Mechanics | 2019年 / 89卷
关键词
Dugdale plastic zone; Penny-shaped crack; Magnetoelectroelastic cylinder; Crack opening displacement;
D O I
暂无
中图分类号
学科分类号
摘要
This paper extends the Dugdale plastic zone to the penny-shaped crack problem for a magnetoelectroelastic (MEE) cylinder, where the crack surfaces are assumed to be magnetoelectrically permeable. Using potential function theory and Hankel transform method, the present boundary value problem is translated into solving a sectionalized Fredholm integral equation of the second kind. The non-singular field solutions are analyzed, and the effects of the applied MEE loads and geometric dimension on the width of plastic zone and crack opening displacements are evaluated. Numerical results show that for the considered model, each of the far-field MEE combination load λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, the far-field magnetoelectric combination load λEH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{EH}}$$\end{document} and the purely mechanical load σ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _0$$\end{document} applied in the far field, respectively, plays an important role in the present fracture analysis. For a given mechanical load and a fixed crack configuration, the negative magnetoelectric loads are prone to promote the crack growth and propagation than the positive ones. These should be helpful for the design and manufacture of MEE materials and devices.
引用
收藏
页码:291 / 305
页数:14
相关论文
共 71 条
[1]  
Zhao MH(2006)Analysis of a penny-shaped crack in a magneto-electro-elastic medium Philos. Mag. 86 4397-4416
[2]  
Yang F(2006)Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials Acta Mech. Sin. 22 233-242
[3]  
Liu T(2007)Fracture analysis of a penny-shaped magnetically dielectric crack in a magnetoelectroelastic material Int. J. Fract. 146 125-138
[4]  
Wang BL(2007)Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer Int. J. Solids Struct. 44 7955-74
[5]  
Han JC(2007)Transient thermal fracture analysis of transversely isotropic magneto-electro-elastic materials J. Therm. Stress. 30 297-317
[6]  
Feng WJ(2008)Analysis of a penny-shaped crack in magnetoelectroelastic materials J. Appl. Phys. 103 083530-1346
[7]  
Su RKL(2010)Thickness effects for a penny-shaped dielectric crack in a magnetoelectroelastic layer Philos. Mag. 90 1327-252
[8]  
Pan E(2010)Dynamic analysis of a penny-shaped dielectric crack in a magnetoelectroelastic solid under impacts Eur. J. Mech. A Solids 29 242-381
[9]  
Feng WJ(2011)Penny-shaped interfacial crack between dissimilar magnetoelectroelastic layers Acta Mech. Sin. 27 371-975
[10]  
Pan E(2012)The axisymmetric problem of a partially insulated mixed-mode crack embedded in a functionally graded pyro magneto-electro-elastic infinite medium subjected to thermal loading J. Therm. Stress. 35 947-1754