On the Spectral Gap of a Square Distance Matrix

被引:0
作者
Xinyu Cheng
Dong Li
David Shirokoff
Brian Wetton
机构
[1] University of British Columbia,Department of Mathematics
[2] New Jersey Institute of Technology,Department of Mathematical Sciences
来源
Journal of Statistical Physics | 2017年 / 166卷
关键词
Distance matrix; Eigenvalue; Solvability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a square distance matrix which arises from a preconditioned Jacobian matrix for the numerical computation of the Cahn–Hilliard problem. We prove strict negativity of all but one associated eigenvalues. This solves a conjecture in Christieb et al. (J Comput Phys 257:193–215, 2014).
引用
收藏
页码:1029 / 1035
页数:6
相关论文
共 8 条
[1]  
Christieb A(2014)High accuracy solutions to energy gradient flows from material science models J. Comput. Phys. 257 193-215
[2]  
Jones J(2016)Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations SIAM J. Numer. Anal. 54 1653-1681
[3]  
Promislow K(1049)The effects of shape on the interaction of colloidal particles Ann. N. Y. Acad. Sci. 51 627-659
[4]  
Wetton B(undefined)undefined undefined undefined undefined-undefined
[5]  
Li D(undefined)undefined undefined undefined undefined-undefined
[6]  
Qiao Z(undefined)undefined undefined undefined undefined-undefined
[7]  
Tang T(undefined)undefined undefined undefined undefined-undefined
[8]  
Onsager L(undefined)undefined undefined undefined undefined-undefined