Robustness for a Liouville Type Theorem in Exterior Domains

被引:0
作者
Juliette Bouhours
机构
[1] UPMC Univ Paris 06,Sorbonne Universités
[2] UMR 7598,CNRS
来源
Journal of Dynamics and Differential Equations | 2015年 / 27卷
关键词
Elliptic equation; Liouville type result; Obstacle ; Maximum principle; 35K57; 35B51; 35B53;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in the robustness of a Liouville type theorem for a reaction diffusion equation in exterior domains. Indeed Berestycki et al. (Commun. Pure Appl. Math., 62(6):729–788, 2009) proved such a result as soon as the domain satisfies some geometric properties. We investigate here whether their result holds for perturbations of the domain. We prove that as soon as our perturbation is close to the initial domain in the C2,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{2,\alpha }$$\end{document} topology the result remains true while it does not if the perturbation is not smooth enough.
引用
收藏
页码:297 / 306
页数:9
相关论文
共 50 条
[41]   Liouville-type Theorems for Fully Nonlinear Elliptic Equations and Systems in Half Spaces [J].
Lu, Guozhen ;
Zhu, Jiuyi .
ADVANCED NONLINEAR STUDIES, 2013, 13 (04) :979-1001
[42]   Ambrosetti-Prodi type results for elliptic equations with nonlinear gradient terms on an exterior domain [J].
Zhao, Jiao ;
Ma, Ruyun .
QUAESTIONES MATHEMATICAE, 2024, 47 (09) :1851-1862
[43]   Q-curvature type problem on bounded domains of Rn [J].
Abdelhedi, Wael ;
Chtioui, Hichem ;
Hajaiej, Hichem .
ASYMPTOTIC ANALYSIS, 2018, 109 (3-4) :143-170
[44]   ON POSITIVE LIOUVILLE THEOREMS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF FUCHSIAN TYPE ELLIPTIC-OPERATORS [J].
PINCHOVER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (03) :313-341
[45]   Liouville Type Theorems for Nonlinear p-Laplacian Equation on Complete Noncompact Riemannian Manifolds* [J].
Huang, Guangyue ;
Zhao, Liang .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (03) :379-390
[46]   Maximum principles and aleksandrov-bakelman-pucci type estimates for nonlocal schrodinger equations with exterior conditions [J].
Biswas, Anup ;
Lorinczi, Jozsef .
SIAM Journal on Mathematical Analysis, 2019, 51 (04) :1543-1581
[47]   Liouville theorem for V-harmonic maps under non-negative (m, V)-Ricci curvature for non-positive m [J].
Kuwae, Kazuhiro ;
Li, Songzi ;
Li, Xiang-Dong ;
Sakurai, Yohei .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 168
[48]   A Liouville-Type Result for Non-cooperative Fisher–KPP Systems and Nonlocal Equations in Cylinders [J].
Léo Girardin ;
Quentin Griette .
Acta Applicandae Mathematicae, 2020, 170 :123-139
[49]   Infinitely many solutions for a fractional Kirchhoff type problem via Fountain Theorem [J].
Xiang, Mingqi ;
Zhang, Binlin ;
Guo, Xiuying .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 120 :299-313
[50]   A Liouville-Type Result for Non-cooperative Fisher-KPP Systems and Nonlocal Equations in Cylinders [J].
Girardin, Leo ;
Griette, Quentin .
ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) :123-139