Multi-fidelity error-estimate-based model management

被引:0
作者
Babcock, Tucker [1 ]
Hall, Dustin [2 ]
Gray, Justin S. [2 ]
Hicken, Jason E. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] NASA Glenn Res Ctr, Prop Syst Anal Branch, MS 5-11, Cleveland, OH 44135 USA
基金
美国国家航空航天局;
关键词
Multi-fidelity optimization; Electric-motor optimization; Error estimates; MULTIDISCIPLINARY DESIGN OPTIMIZATION; SQP ALGORITHM; MULTIFIDELITY; APPROXIMATION; DERIVATIVES; SURFACE; SNOPT;
D O I
10.1007/s00158-023-03731-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a novel multi-fidelity model-management framework based on the estimated error between the low-fidelity and high-fidelity models. The optimization algorithm is similar to classical multi-fidelity trust-region model-management approaches, but it replaces the trust-radius constraint with a bound on the estimated error between the low- and high-fidelity models. This enables globalization without requiring the user to specify non-intuitive parameters such as the initial trust radius, which have a significant impact on the cost of the optimization yet can be hard to determine a priori. We demonstrate the framework on a simple one-dimensional optimization problem, a series of analytical benchmark problems, and a realistic electric-motor optimization. We show that for low-fidelity models that accurately capture the trends of the high-fidelity model, the developed framework can significantly improve the efficiency of obtaining high-fidelity optima compared to state-of-the-art multi-fidelity optimization methods and a direct high-fidelity optimization.
引用
收藏
页数:19
相关论文
共 55 条
[1]   Approximation and model management in aerodynamic optimization with variable-fidelity models [J].
Alexandrov, NA ;
Lewis, RM ;
Gumbert, CR ;
Green, LL ;
Newman, PA .
JOURNAL OF AIRCRAFT, 2001, 38 (06) :1093-1101
[2]   A trust-region framework for managing the use of approximation models in optimization [J].
Alexandrov, NM ;
Dennis, JE ;
Lewis, RM ;
Torczon, V .
STRUCTURAL OPTIMIZATION, 1998, 15 (01) :16-23
[3]  
Alyanak E., 2016, AIAA MODELING SIMUL, DOI 10.2514/6.2016-4007
[4]   MFEM: A modular finite element methods library [J].
Anderson, Robert ;
Andrej, Julian ;
Barker, Andrew ;
Bramwell, Jamie ;
Camier, Jean-Sylvain ;
Cerveny, Jakub ;
Dobrev, Veselin ;
Dudouit, Yohann ;
Fisher, Aaron ;
Kolev, Tzanio ;
Pazner, Will ;
Stowell, Mark ;
Tomov, Vladimir ;
Akkerman, Ido ;
Dahm, Johann ;
Medina, David ;
Zampini, Stefano .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 :42-74
[5]   Multifidelity Quasi-Newton Method for Design Optimization [J].
Bryson, Dean E. ;
Rumpfkeil, Markus P. .
AIAA JOURNAL, 2018, 56 (10) :4074-4086
[7]   FINITE-ELEMENT IMPLEMENTATION OF VIRTUAL WORK PRINCIPLE FOR MAGNETIC OR ELECTRIC FORCE AND TORQUE COMPUTATION [J].
COULOMB, JL ;
MEUNIER, G .
IEEE TRANSACTIONS ON MAGNETICS, 1984, 20 (05) :1894-1896
[8]   Multi-fidelity wing aerostructural optimization using a trust region filter-SQP algorithm [J].
Elham, Ali ;
van Tooren, Michel J. L. .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (05) :1773-1786
[9]  
Eriksson D, 2021, PR MACH LEARN RES, V161, P493
[10]   Data Fusion With Latent Map Gaussian Processes [J].
Eweis-Labolle, Jonathan Tammer ;
Oune, Nicholas ;
Bostanabad, Ramin .
JOURNAL OF MECHANICAL DESIGN, 2022, 144 (09)