Boundary-Value Problems for the Helmholtz Equation in Domains of the Complex Plane

被引:0
作者
M. A. Sukhorol’s’kyi
机构
[1] “Lvivs’ka Politekhnika” National University,
来源
Ukrainian Mathematical Journal | 2016年 / 68卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
By using conformal mappings of a plane with elliptic hole and a plane with cross-shaped hole into the exterior of the circle, we construct systems of functions playing the role of bases in the spaces of functions analytic in these domains. The Faber polynomials are biorthogonal to the basis functions. We construct the solutions of the Helmholtz equation in the plane with holes whose boundary values coincide with the boundary values of analytic functions represented in the form of series in these bases.
引用
收藏
页码:406 / 421
页数:15
相关论文
共 50 条
[21]   METHOD OF SOLVING THE ELECTRODYNAMICS BOUNDARY-VALUE PROBLEMS FOR DOMAINS OF COMPLEX SHAPE [J].
KRAVCHENKO, VF ;
NEFEDOV, EI .
DOKLADY AKADEMII NAUK SSSR, 1979, 248 (01) :74-77
[22]   APPROXIMATE SOLUTION OF NONLINEAR BOUNDARY-VALUE PROBLEMS IN DOMAINS OF COMPLEX SHAPE [J].
DOROKHOV, VO .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1974, (03) :201-204
[23]   Boundary Value Problems for the Associated Helmholtz Equation [J].
Kapustin, S. A. ;
Raevskii, A. S. ;
Raevskii, S. B. .
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (11) :1252-1257
[24]   BOUNDARY VALUE PROBLEMS FOR HELMHOLTZ EQUATION AND THEIR APPLICATIONS [J].
Maher, Ahmed .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (03)
[25]   On solvability of boundary-value problems for the wave equation with a nonlinear dissipation in noncylindrical domains [J].
Kozhanov, AI ;
Lar'kin, NA .
SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (06) :1062-1081
[26]   Boundary Value Problems for the Associated Helmholtz Equation [J].
S. A. Kapustin ;
A. S. Raevskii ;
S. B. Raevskii .
Journal of Communications Technology and Electronics, 2020, 65 :1252-1257
[27]   Boundary Value Problems for the Helmholtz Equation in an Octant [J].
Frank-Olme Speck ;
Ernst Peter Stephan .
Integral Equations and Operator Theory, 2008, 62 :269-300
[28]   Boundary value problems for the Helmholtz equation in an octant [J].
Speck, Frank-Olme ;
Stephan, Ernst Peter .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (02) :269-300
[29]   On Solvability of Boundary-Value Problems for the Wave Equation with a Nonlinear Dissipation in Noncylindrical Domains [J].
A. I. Kozhanov ;
N. A. Lar'kin .
Siberian Mathematical Journal, 2001, 42 :1062-1081
[30]   MIXED BOUNDARY VALUE PROBLEMS FOR THE HELMHOLTZ EQUATION [J].
Natroshvili, David ;
Tsertsvadze, Tornike .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2022, 34 (04) :475-488