Persistence of Invariant Tori in Infinite-Dimensional Hamiltonian Systems

被引:0
作者
Peng Huang
机构
[1] Guizhou University of Finance and Economics,School of Mathematics and Statistics
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Invariant tori; Infinite-dimensional Hamiltonian systems;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the persistence of invariant tori in infinite-dimensional Hamiltonian systems H=⟨ω,I⟩+P(θ,I,ω),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H=\langle \omega ,I \rangle +P(\theta ,I,\omega ), \end{aligned}$$\end{document}where θ∈TΛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in \mathbb {T}^\Lambda $$\end{document}, I∈RΛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\in \mathbb {R}^\Lambda $$\end{document}, the frequency ω=(⋯,ωλ,⋯)λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega }=(\cdots ,{\omega }_\lambda ,\cdots )_{\lambda \in \Lambda }$$\end{document} is regarded as parameters varying freely over some subset ℓ∞(Λ,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^\infty (\Lambda ,\mathbb {R})$$\end{document} of the parameter space RΛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^\Lambda $$\end{document}, ω=(⋯,ωλ,⋯)λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega }=(\cdots ,{\omega }_\lambda ,\cdots )_{\lambda \in \Lambda }$$\end{document} is a bilateral infinite sequence of rationally independent frequency, in other words, any finite segments of ω=(⋯,ωλ,⋯)λ∈Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega }=(\cdots ,{\omega }_\lambda ,\cdots )_{\lambda \in \Lambda }$$\end{document} are rationally independent.
引用
收藏
相关论文
共 33 条
[1]  
Arnold VI(1963)Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian Uspekhi Matematicheskikh Nauk 18 13-40
[2]  
Biasco L(2020)An abstract Birkhoff normal form theorem and exponential type stability of the 1D NLS Commun. Math. Phys. 375 2089-2153
[3]  
Massetti J(2005)On invariant tori of full dimension for 1D periodic NLS J. Funct. Anal. 229 62-94
[4]  
Procesi M(1994)Existence of KAM tori in degenerate Hamiltonian systems J. Differ. Equ. 114 288-335
[5]  
Bourgain J(2002)Persistence of invariant tori on submanifolds in Hamiltonian systems J. Nonlinear Sci. 12 585-617
[6]  
Cheng CQ(1988)Perturbations of stable invariant tori for Hamiltonian systems Annali della Scuola Normale Superiore di Pisa 15 115-147
[7]  
Sun YS(1986)Localization in disordered, nonlinear dynamical systems J. Stat. Phys. 42 247-274
[8]  
Chow S-N(2018)Persistence of invariant tori in integrable Hamiltonian systems under almost periodic perturbations J. Nonlinear Sci. 28 1865-1900
[9]  
Li Y(1987)Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum Funct. Anal. Appl. 21 192-205
[10]  
Yi Y(1967)Convergent series expansions for quasi-periodic motions Math. Ann. 169 136-176