One-loop effective action in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}=2 supersymmetric massive Yang-Mills field theory

被引:0
作者
I. L. Buchbinder
N. G. Pletnev
机构
[1] Tomsk State Pedagogical University,Mathematical Institute
[2] Siberian Branch,undefined
[3] RAS,undefined
关键词
supersymmetry; quantum field theory;
D O I
10.1007/s11232-008-0115-7
中图分类号
学科分类号
摘要
We consider the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}=2 supersymmetric massive Yang-Mills field theory formulated in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}=2 harmonic superspace. We present various gauge-invariant forms of writing the mass term in the action (in particular, using the Stueckelberg superfield), which result in dual formulations of the theory. We develop a gaugeinvariant and explicitly supersymmetric scheme of the loop expansion of the superfield effective action beyond the mass shell. In the framework of this scheme, we calculate gauge-invariant and explicitly \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}=2 supersymmetric one-loop counterterms including new counterterms depending on the Stueckelberg superfield. We analyze the component structure of one of these counterterms.
引用
收藏
页码:1383 / 1398
页数:15
相关论文
共 34 条
  • [1] Slavnov A. A.(1971)undefined Theor. Math. Phys. 3 312-316
  • [2] Faddeev L. D.(1938)undefined Helv. Phys. Acta 11 225-244
  • [3] Stueckelberg T. C. G.(2004)undefined Internat. J. Mod. Phys. A 19 3265-3347
  • [4] Ruegg H.(1997)undefined Nucl. Phys. B Proc. Suppl. 56 318-321
  • [5] Ruiz-Altaba M.(1981)undefined Nucl. Phys. B 177 282-296
  • [6] Dragon N.(1984)undefined Sov. J. Nucl. Phys 40 1363-158
  • [7] Hurth T.(2006)undefined Phys. Rep. 423 91-498
  • [8] van Nieuwenhuizen P.(1984)undefined Class. Q. Grav. 1 469-464
  • [9] Freedman D. Z.(1967)undefined Progr. Theoret. Phys. 37 452-2154
  • [10] Townsend P. K.(1991)undefined Modern Phys. Lett. A 6 2143-71