Total eccentricity index of trees with fixed pendent vertices and trees with fixed diameter

被引:0
作者
Rashid Farooq
Shehnaz Akhter
Juan Rada
机构
[1] National University of Sciences and Technology,School of Natural Sciences
[2] Universidad de Antioquia,Instituto de Matemáticas
来源
Japan Journal of Industrial and Applied Mathematics | 2022年 / 39卷
关键词
Total eccentricity index; Pendent vertex; Diameter; Tree; 05C05; 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(VG,EG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}=(\mathcal {V}_{\mathcal {G}},\mathcal {E}_{\mathcal {G}})$$\end{document} be a connected graph with n vertices. The eccentricity ecG(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ec_{\mathcal {G}}(w)$$\end{document} of a vertex w in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} is the maximum distance between w and any other vertex of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document}. The total eccentricity index τ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (\mathcal {G})$$\end{document} of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} is defined as τ(G)=∑w∈VGecG(w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (\mathcal {G})=\sum \nolimits _{w\in \mathcal {V}_{\mathcal {G}}} ec_{\mathcal {G}}(w)$$\end{document}. In this paper, we derive the trees with minimum and maximum total eccentricity index among the class of n-vertex trees with p pendent vertices. We also determine the trees with minimum and maximum total eccentricity index among the class of n-vertex trees with a given diameter.
引用
收藏
页码:443 / 465
页数:22
相关论文
共 46 条
[1]  
Akhter S(2019)Two degree distance based topological indices of chemical trees IEEE Access 7 95653-95658
[2]  
Akhter S(2020)Computing the eccentric connectivity index and eccentric adjacency index of conjugated trees Util. Math. 14 99-114
[3]  
Farooq R(2020)On the eccentric adjacency index of unicyclic graphs and trees Asian Eur. J. Math. 13 2050028-2522
[4]  
Akhter S(2020)Eccentric adjacency index of graphs with a given number of cut edges Bull. Malays. Math. Sci. Soc. 43 2509-186
[5]  
Farooq R(1996)On eccentric vertices in graphs Networks 28 181-511
[6]  
Akhter S(2015)Total eccentricity index of the generalized Hierarchical poroduct of graphs Int. J. Appl. Comput. Math 1 503-529
[7]  
Farooq R(2015)Total eccentricity index of some composite graphs Malaya J. Math. 3 523-1029
[8]  
Chartrand G(2008)Predicting anti-HIV-1 activity of J. Mol. Graph. Model. 26 1020-44
[9]  
Schultz M(2011)-arylbenzonitriles: computational approach using superaugmented eccentric connectivity topochemical indices Iran. J. Math. Chem. 2 39-131
[10]  
Winters SJ(2014)Eccentric and total eccentric connectivity indices of caterpillars Electron. Notes Discrete Math. 45 125-190