A new class of contact riemannian manifolds

被引:0
|
作者
Jong Taek Cho
机构
[1] Chonnam University,Department of Mathematics
来源
Israel Journal of Mathematics | 1999年 / 109卷
关键词
Vector Field; Riemannian Manifold; Constant Curvature; Contact Manifold; Base Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
N. Tanaka ([10]) defined the canonical affine connection on a nondegenerate integrable CR manifold. In the present paper, we introduce a new class of contact Riemannian manifolds satisfying (C) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(C)(\hat \nabla \dot \gamma R)( \cdot ,\dot \gamma )\dot \gamma = 0$$ \end{document} for any unit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat \nabla $$ \end{document}-geodesic (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma (\hat \nabla _{\dot \gamma } \dot \gamma = 0)$$ \end{document}, where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat \nabla $$ \end{document} is the generalized Tanaka connection. In particular, when the associated CR structure of a given contact Riemannian manifold is integrable we have a structure theorem and find examples which are neither Sasakian nor locally symmetric but satisfy the condition (C).
引用
收藏
页码:299 / 318
页数:19
相关论文
共 50 条