Voisin-Borcea manifolds and heterotic orbifold models

被引:0
作者
W. Buchmuller
J. Louis
J. Schmidt
R. Valandro
机构
[1] Deutsches Elektronen-Synchrotron DESY,II Institute for Theoretical Physics
[2] Hamburg University,Zentrum für Mathematische Physik
[3] Hamburg University,undefined
来源
Journal of High Energy Physics | / 2012卷
关键词
Superstrings and Heterotic Strings; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relation between a heterotic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${T^6 \left/ {{{{\mathbb{Z}}_6}}} \right.}$\end{document} orbifold model and a compactification on a smooth Voisin-Borcea Calabi-Yau three-fold with non-trivial line bundles. This orbifold can be seen as a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\mathbb{Z}}_2}$\end{document} quotient of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${T^4 \left/ {{{{\mathbb{Z}}_3}}} \right.}\times {T^2}$\end{document}. We consider a two-step resolution, whose intermediate step is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left( {K3\times {T^2}} \right){{\mathbb{Z}}_2}$\end{document}. This allows us to identify the massless twisted states which correspond to the geometric Kähler and complex structure moduli. We work out the match of the two models when non-zero expectation values are given to all twisted geometric moduli. We find that even though the orbifold gauge group contains an SO(10) factor, a possible GUT group, the subgroup after higgsing does not even include the standard model gauge group. Moreover, after higgsing, the massless spectrum is non-chiral under the surviving gauge group.
引用
收藏
相关论文
共 119 条
  • [1] Dixon LJ(1985)Strings on orbifolds Nucl. Phys. B 261 678-undefined
  • [2] Harvey JA(1986)Strings on orbifolds. 2 Nucl. Phys. B 274 285-undefined
  • [3] Vafa C(1990) orbifold models Nucl. Phys. B 341 611-undefined
  • [4] Witten E(2005)Searching for realistic 4 Nucl. Phys. B 704 3-undefined
  • [5] Dixon LJ(2006) string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Phys. Rev. Lett. 96 121602-undefined
  • [6] Harvey JA(2007) orbifold Nucl. Phys. B 785 149-undefined
  • [7] Vafa C(2007)Supersymmetric standard model from the heterotic string Phys. Lett. B 645 88-undefined
  • [8] Witten E(2008)Supersymmetric standard model from the heterotic string (II) Phys. Lett. B 668 331-undefined
  • [9] Katsuki Y(2010)A mini-landscape of exact MSSM spectra in heterotic orbifolds Phys. Lett. B 683 340-undefined
  • [10] Kobayashi T(2007)Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a JHEP 01 051-undefined