A distributional approach to the geometry of 2D dislocations at the continuum scale

被引:0
作者
Nicolas Van Goethem
François Dupret
机构
[1] Universidade de Lisboa, Faculdade de Ciências, Departamento de Matemática, Centro de Matemática e Aplicações Fundamentais, 1649-003 Lisboa
[2] CESAME, Université catholique de Louvain, 1348 Louvain-la-Neuve
关键词
Contortion; Defect density tensors; Disclinations; Dislocations; Distribution theory; Multivalued functions; Single crystals; Strain incompatibility;
D O I
10.1007/s11565-012-0149-5
中图分类号
学科分类号
摘要
This paper develops a geometrical model of dislocations and disclinations in single crystals at the continuum scale, with use of the distribution theory to represent concentrated effects in the defect lines which in turn form the branching lines of the multiple-valued elastic displacement and rotation fields. Fundamental identities relating the incompatibility tensor to the dislocation and disclination densities are proved in the case of locally countably many parallel defect lines, under global 2D strain assumptions relying on the geometric measure theory. Our approach provides a new understanding of the continuum theory of defects and introduces the appropriate objective internal variables and the required mathematical framework for a rigorous homogenization of all relevant fields from mesoscopic to macroscopic scale. © 2012 Università degli Studi di Ferrara.
引用
收藏
页码:407 / 434
页数:27
相关论文
共 25 条
[1]  
Almgren F.J., Deformations and multiple-valued functions, P. Symp. Pure Math., 44, pp. 29-130, (1986)
[2]  
Ambrosio L., Fusco N., Palara D., Functions of Bounded Variation and Free Discontinuity Problems, (2000)
[3]  
Bilby B.A., Bullough R., Smith E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proc. R. Soc. Lond. A, 231, 1185, pp. 263-273, (1955)
[4]  
Burgers J.M., Some considerations on the field of stress connected with dislocations in a regular crystal lattice, Proc. K. Ned. Akad., 42, pp. 293-324, (1939)
[5]  
Cantor G., Contributions to the founding of the theory of transfinite numbers, (1955)
[6]  
Cermelli P., Gurtin M.E., On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids, 49, pp. 1539-1568, (2001)
[7]  
Dascalu C., Maugin G.A., The energy of elastic defects: a distributional approach, Proc. R. Soc. Lond. A, 445, pp. 23-37, (1994)
[8]  
Edelen D.G.B., Lagoudas D.C., Matching the inner and outer solutions in the continuum theory of dislocations, Int J Eng Sci, 37, 1, pp. 59-73, (1999)
[9]  
Eshelby J.D., Frank F.C., Nabarro F.R.N., The equilibrium linear arrays of dislocations, Phil. Mag., 42, pp. 351-364, (1951)
[10]  
Eshelby J.D., A simple derivation of the elastic field of an edge dislocation, Br. J. Appl. Phys., 17, pp. 1131-1135, (1966)