Blow-up criterion for the density dependent inviscid Boussinesq equations

被引:0
作者
Li Li
Yanping Zhou
机构
[1] China Three Gorges University,College of Science
[2] China Three Gorges University,College of Science & Three Gorges Mathematical Research Center
来源
Boundary Value Problems | / 2020卷
关键词
Inviscid Boussinesq equations; Density-dependent; Local existence; Blow-up criterion; 35Q35; 76B03;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the density-dependent incompressible inviscid Boussinesq equations in RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}\ (N\geq 2)$\end{document}. By using the basic energy method, we first give the a priori estimates of smooth solutions and then get a blow-up criterion. This shows that the maximum norm of the gradient velocity field controls the breakdown of smooth solutions of the density-dependent inviscid Boussinesq equations. Our result extends the known blow-up criteria.
引用
收藏
相关论文
共 31 条
[1]  
Bae H.(2020)A blow-up criterion for the inhomogeneous incompressible Euler equations Nonlinear Anal. 196 395-411
[2]  
Lee W.(2015)On the well-posedness of the inviscid Boussinesq equations in the Besov–Morrey spaces Kinet. Relat. Models 8 55-80
[3]  
Shin J.(1999)Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations Nagoya Math. J. 155 144-165
[4]  
Bie Q.(2003)Local existence and blow-up criterion of the inhomogeneous Euler equations J. Math. Fluid Mech. 5 935-946
[5]  
Wang Q.(1997)Local existence and blow-up criterion for the Boussinesq equations Proc. R. Soc. Edinb. A 127 220-238
[6]  
Yao Z.-A.(2012)Local well-posedness and blow up criterion for the inviscid Boussinesq system in Hölder spaces J. Partial Differ. Equ. 25 2130-2170
[7]  
Chae D.(2010)On the well-posedness of the incompressible density-dependent Euler equations in the J. Differ. Equ. 248 208-218
[8]  
Kim S.(1989) framework Acta Math. Appl. Sin. Engl. Ser. 5 891-907
[9]  
Nam H.(1988)Spectral method for solving two-dimensional Newton–Boussinesq equation Commun. Pure Appl. Math. 41 280-292
[10]  
Chae D.(2010)Commutator estimates and the Euler and Navier–Stokes equations J. Math. Fluid Mech. 12 1920-1931