Gabor fields and wavelet sets for the Heisenberg group

被引:0
|
作者
Bradley Currey
Azita Mayeli
机构
[1] Saint Louis University,Department of Mathematics and Computer Science
[2] Stony Brook University,Mathematics Department
来源
关键词
Wavelet; Heisenberg group; Gabor frame; Parseval frame; Multiplicity free subspace; Primary 42C30; 42C15; Secondary 22E27;
D O I
暂无
中图分类号
学科分类号
摘要
We study singly-generated wavelet systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}^2}$$\end{document} that are naturally associated with rank-one wavelet systems on the Heisenberg group N. We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N, we give an explicit construction for Parseval frame wavelets that are associated with I. We say that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in L^2(I\times \mathbb {R})}$$\end{document} is Gabor field over I if, for a.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in I}$$\end{document}, |λ|1/2g(λ, ·) is the Gabor generator of a Parseval frame for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R})}$$\end{document}, and that I is a Heisenberg wavelet set if every Gabor field over I is a Parseval frame (mother-)wavelet for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^2(\mathbb {R}^2)}$$\end{document}. We then show that I is a Heisenberg wavelet set if and only if I is both translation congruent with a subset of the unit interval and dilation congruent with the Shannon set.
引用
收藏
页码:119 / 142
页数:23
相关论文
共 50 条
  • [1] Gabor fields and wavelet sets for the Heisenberg group
    Currey, Bradley
    Mayeli, Azita
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (02): : 119 - 142
  • [2] Isodiametric sets in the Heisenberg group
    Leonardi, Gian Paolo
    Rigot, Severine
    Vittone, Davide
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (04) : 999 - 1024
  • [3] Wavelet Sets and Scaling Sets in Local Fields
    Biswaranjan Behera
    Journal of Fourier Analysis and Applications, 2021, 27
  • [4] Wavelet Sets and Scaling Sets in Local Fields
    Behera, Biswaranjan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
  • [5] Uncertainty Principle for Gabor Transform on the Quaternionic Heisenberg Group
    Faress, Moussa
    Fahlaoui, Said
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (10) : 1222 - 1237
  • [6] Gabor System based on the unitary dual of the Heisenberg group
    Das, Santi R.
    Ramakrishnan, Radha
    FORUM MATHEMATICUM, 2025,
  • [7] Orthonormality of wavelet system on the Heisenberg group
    Arati, S.
    Radha, R.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 131 : 171 - 192
  • [8] Geodetically convex sets in the Heisenberg group
    Monti, R
    Rickly, M
    JOURNAL OF CONVEX ANALYSIS, 2005, 12 (01) : 187 - 196
  • [9] Convex isoperimetric sets in the Heisenberg group
    Monti, Roberto
    Rickly, Matthieu
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2009, 8 (02) : 391 - 415
  • [10] Sets of finite perimeter in the Heisenberg group
    Franchi, B
    Serapioni, R
    Cassano, FS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (03): : 183 - 188