Steady Flow of a Navier–Stokes Liquid Past an Elastic Body

被引:1
作者
Giovanni P. Galdi
Mads Kyed
机构
[1] University of Pittsburgh,Department of Mechanical Engineering and Materials Science
[2] RWTH-Aachen,Institut für Mathematik
来源
Archive for Rational Mechanics and Analysis | 2009年 / 194卷
关键词
Stokes Equation; Steady Flow; Control Force; Elastic Body; Exterior Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We perform a mathematical analysis of the steady flow of a viscous liquid, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} , past a three-dimensional elastic body, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} . We assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{L}}$$\end{document} fills the whole space exterior to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} , and that its motion is governed by the Navier–Stokes equations corresponding to non-zero velocity at infinity, v∞. As for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} , we suppose that it is a St. Venant–Kirchhoff material, held in equilibrium either by keeping an interior portion of it attached to a rigid body or by means of appropriate control body force and surface traction. We treat the problem as a coupled steady state fluid-structure problem with the surface of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} as a free boundary. Our main goal is to show existence and uniqueness for the coupled system liquid-body, for sufficiently small |v∞|. This goal is reached by a fixed point approach based upon a suitable reformulation of the Navier–Stokes equation in the reference configuration, along with appropriate a priori estimates of solutions to the corresponding Oseen linearization and to the elasticity equations.
引用
收藏
页码:849 / 875
页数:26
相关论文
共 15 条
  • [1] Chambolle A.(2005)Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate J. Math. Fluid Mech. 7 368-404
  • [2] Desjardins B.(2005)Motion of an elastic solid inside an incompressible viscous fluid Arch. Ration. Mech. Anal. 176 25-102
  • [3] Esteban M.J.(2006)The interaction between quasilinear elastodynamics and the Navier–Stokes equations Arch. Ration. Mech. Anal. 179 303-352
  • [4] Grandmont C.(2007)Further properties of steady-state solutions to the Navier–Stokes problem past a three-dimensional obstacle J. Math. Phys 48 065207-94
  • [5] Coutand D.(2002)Existence for a three-dimensional steady-state fluid–structure interaction problem J. Math. Fluid Mech. 4 76-1221
  • [6] Shkoller S.(1991)The large deformation of nonlinearly elastic tubes in two-dimensional flows SIAM J. Math. Anal. 22 1193-464
  • [7] Coutand D.(1992)The large deformation of non-linearly elastic shells in axisymmetric flows Ann. Inst. H. Poincaré Anal. Non Linéaire. 9 433-165
  • [8] Shkoller S.(2007)On the stationary interaction of a Navier–Stokes fluid with an elastic tube wall Appl. Anal. 86 149-undefined
  • [9] Galdi G.P.(undefined)undefined undefined undefined undefined-undefined
  • [10] Grandmont C.(undefined)undefined undefined undefined undefined-undefined