Remarks on Liouville-Type Theorems for the Steady MHD and Hall-MHD Equations

被引:0
作者
Xiaomeng Chen
Shuai Li
Wendong Wang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
来源
Journal of Nonlinear Science | 2022年 / 32卷
关键词
Liouville-type theorems; MHD equations; Hall-MHD equations; Stationary Stokes system; 35Q30; 76D03; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we investigate Liouville-type theorems for the steady three-dimensional MHD and Hall-MHD equations and show that the velocity field u and the magnetic field B are vanishing provided that B∈L6,∞(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\in L^{6,\infty }(\mathbb {R}^3)$$\end{document} and u∈BMO-1(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in BMO^{-1}(\mathbb {R}^3)$$\end{document}, which state that the velocity field plays an important role. Moreover, the similar result holds in the case of partial viscosity or diffusivity for the three-dimensional MHD equations.
引用
收藏
相关论文
共 66 条
  • [1] Bildhauer M(2013)Liouville-type theorems for steady flows of degenerate power law fluids in the plane J. Math. Fluid Mech. 15 583-616
  • [2] Fuchs M(2008)Ill-posedness of the Navier–Stokes equations in a critical space in 3D J. Funct. Anal. 255 2233-2247
  • [3] Zhang G(2020)Decay and vanishing of some D-solutions of the Navier–Stokes equations Arch. Ration. Mech. Anal. 237 1383-1419
  • [4] Bourgain J(2014)Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations Commun. Math. Phys. 326 37-48
  • [5] Pavlović N(2021)Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system J. Math. Fluid Mech. 23 21-565
  • [6] Carrillo B(2014)Well-posedness for Hall-magnetohydrodynamics Ann. Inst. H. Poincaré Anal. Non Linéaire 31 555-5285
  • [7] Pan X(2016)Liouville type theorems for the steady axially symmetric Navier–Stokes and Magnetohydrodynamic equations Dis. Continuous Dyn. Syst. 36 5267-5560
  • [8] Zhang Q(2016)On Liouville type theorems for the steady Navier–Stokes equations in J. Differ. Equ. 261 5541-197
  • [9] Zhao N(2019)On Liouville type theorem for the stationary Navier–Stokes equations Calc. Var. Partial Differ. Equ. 58 11-404
  • [10] Chae D(2021)The Liouville type theorem for the stationary magnetohydrodynamic equations J. Math. Phys. 62 031503-254