Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails

被引:0
|
作者
Alexander Gushchin
Ilya Pavlyukevich
Marian Ritsch
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,Institute of Mathematics
[2] National Research University Higher School of Economics,undefined
[3] Friedrich Schiller University Jena,undefined
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Lévy process; Ornstein–Uhlenbeck type process; Local asymptotic mixed normality; Heavy tails; Regular variation; Maximum likelihood estimator; Asymptotic observed information; 62M05; 60F05; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimation of the drift parameter of an ergodic Ornstein–Uhlenbeck type process driven by a Lévy process with heavy tails. The process is observed continuously on a long time interval [0, T], T→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\rightarrow \infty $$\end{document}. We prove that the statistical model is locally asymptotic mixed normal and the maximum likelihood estimator is asymptotically efficient.
引用
收藏
页码:553 / 570
页数:17
相关论文
共 50 条
  • [41] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [42] Input estimation from discrete workload observations in a Lévy-driven storage system
    Nieman, Dennis
    Mandjes, Michel
    Ravner, Liron
    STATISTICS & PROBABILITY LETTERS, 2025, 216
  • [43] Parameter Estimation for an Ornstein-Uhlenbeck Process Driven by a General Gaussian Noise
    Yong Chen
    Hongjuan Zhou
    Acta Mathematica Scientia, 2021, 41 : 573 - 595
  • [44] Metastable behaviour of small noise Lévy-driven diffusions
    Imkeller, Peter
    Pavlyukevich, Ilya
    ESAIM - Probability and Statistics, 2008, 12 : 412 - 437
  • [45] Robust parameter estimation for the Ornstein–Uhlenbeck process
    Sonja Rieder
    Statistical Methods & Applications, 2012, 21 : 411 - 436
  • [46] Parameter Estimation for Lévy-Driven Continuous-Time Linear Models with Tapered Data
    Mamikon S. Ginovyan
    Acta Applicandae Mathematicae, 2020, 169 : 79 - 97
  • [47] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98
  • [48] A Lévy-driven rainfall model with applications to futures pricing
    Ragnhild C. Noven
    Almut E. D. Veraart
    Axel Gandy
    AStA Advances in Statistical Analysis, 2015, 99 : 403 - 432
  • [49] Support Theorem for Lévy-driven Stochastic Differential Equations
    Oleksii Kulyk
    Journal of Theoretical Probability, 2023, 36 : 1720 - 1742
  • [50] Retarded Stationary Ornstein-Uhlenbeck Processes Driven by L,vy Noise and Operator Self-Decomposability
    Liu, Kai
    POTENTIAL ANALYSIS, 2010, 33 (03) : 291 - 312