Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails

被引:0
|
作者
Alexander Gushchin
Ilya Pavlyukevich
Marian Ritsch
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,Institute of Mathematics
[2] National Research University Higher School of Economics,undefined
[3] Friedrich Schiller University Jena,undefined
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Lévy process; Ornstein–Uhlenbeck type process; Local asymptotic mixed normality; Heavy tails; Regular variation; Maximum likelihood estimator; Asymptotic observed information; 62M05; 60F05; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimation of the drift parameter of an ergodic Ornstein–Uhlenbeck type process driven by a Lévy process with heavy tails. The process is observed continuously on a long time interval [0, T], T→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\rightarrow \infty $$\end{document}. We prove that the statistical model is locally asymptotic mixed normal and the maximum likelihood estimator is asymptotically efficient.
引用
收藏
页码:553 / 570
页数:17
相关论文
共 50 条
  • [21] ORNSTEIN-UHLENBECK TYPE PROCESSES WITH HEAVY DISTRIBUTION TAILS
    Borovkov, K.
    Decrouez, G.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2013, 57 (03) : 396 - 418
  • [22] Parameter estimation for the non-stationary Ornstein–Uhlenbeck process with linear drift
    Hui Jiang
    Xing Dong
    Statistical Papers, 2015, 56 : 257 - 268
  • [23] The Least Squares Estimation for the α-Stable Ornstein-Uhlenbeck Process with Constant Drift
    Yurong Pan
    Litan Yan
    Methodology and Computing in Applied Probability, 2019, 21 : 1165 - 1182
  • [24] Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind
    Azmoodeh, Ehsan
    Morlanes, Jose Igor
    STATISTICS, 2015, 49 (01) : 1 - 18
  • [25] The Least Squares Estimation for the α-Stable Ornstein-Uhlenbeck Process with Constant Drift
    Pan, Yurong
    Yan, Litan
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2019, 21 (04) : 1165 - 1182
  • [26] Lévy-Driven Langevin Systems: Targeted Stochasticity
    Iddo Eliazar
    Joseph Klafter
    Journal of Statistical Physics, 2003, 111 : 739 - 768
  • [27] ADMISSION CONTROL FOR MULTIDIMENSIONAL WORKLOAD INPUT WITH HEAVY TAILS AND FRACTIONAL ORNSTEIN-UHLENBECK PROCESS
    Budhiraja, Amarjit
    Pipiras, Vladas
    Song, Xiaoming
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) : 476 - 505
  • [28] Lévy-driven Volterra Equations in Space and Time
    Carsten Chong
    Journal of Theoretical Probability, 2017, 30 : 1014 - 1058
  • [29] Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process
    Maslowski, Bohdan
    Tudor, Ciprian A.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07): : 880 - 901
  • [30] Stochastic Approximation Procedures for Lévy-Driven SDEs
    Jan Seidler
    Ondřej Týbl
    Journal of Optimization Theory and Applications, 2023, 197 : 817 - 837