Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails

被引:0
|
作者
Alexander Gushchin
Ilya Pavlyukevich
Marian Ritsch
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,Institute of Mathematics
[2] National Research University Higher School of Economics,undefined
[3] Friedrich Schiller University Jena,undefined
来源
Statistical Inference for Stochastic Processes | 2020年 / 23卷
关键词
Lévy process; Ornstein–Uhlenbeck type process; Local asymptotic mixed normality; Heavy tails; Regular variation; Maximum likelihood estimator; Asymptotic observed information; 62M05; 60F05; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of estimation of the drift parameter of an ergodic Ornstein–Uhlenbeck type process driven by a Lévy process with heavy tails. The process is observed continuously on a long time interval [0, T], T→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\rightarrow \infty $$\end{document}. We prove that the statistical model is locally asymptotic mixed normal and the maximum likelihood estimator is asymptotically efficient.
引用
收藏
页码:553 / 570
页数:17
相关论文
共 50 条
  • [11] Semi-Lévy-Driven CARMA Process: Estimation and Prediction
    Navideh Modarresi
    Saeid Rezakhah
    Mohammad Mohammadi
    Journal of Statistical Theory and Practice, 2023, 17
  • [12] Regularity of Ornstein–Uhlenbeck Processes Driven by a Lévy White Noise
    Zdzisław Brzeźniak
    Jerzy Zabczyk
    Potential Analysis, 2010, 32 : 153 - 188
  • [13] Ornstein-Uhlenbeck Processes Driven by Cylindrical Lévy Processes
    Markus Riedle
    Potential Analysis, 2015, 42 : 809 - 838
  • [14] Gamma mixed fractional Lévy Ornstein-Uhlenbeck process
    Araya, Hector
    Garzon, Johanna
    Rubilar-Torrealba, Rolando
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 63 - 83
  • [15] The Class of Distributions of Periodic Ornstein–Uhlenbeck Processes Driven by Lévy Processes
    Jan Pedersen
    Ken-Iti Sato
    Journal of Theoretical Probability, 2005, 18 : 209 - 235
  • [16] Regularity of Ornstein-Uhlenbeck Processes Driven by a L,vy White Noise
    Brzezniak, Zdzisaw
    Zabczyk, Jerzy
    POTENTIAL ANALYSIS, 2010, 32 (02) : 153 - 188
  • [17] L,vy-driven GPS queues with heavy-tailed input
    Debicki, Krzysztof
    Liu, Peng
    Mandjes, Michel
    Sierpinska-Tulacz, Iwona
    QUEUEING SYSTEMS, 2017, 85 (3-4) : 249 - 267
  • [18] Lévy-Driven Carma Processes
    P. J. Brockwell
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 113 - 124
  • [19] Lévy-driven GPS queues with heavy-tailed input
    Krzysztof Dȩbicki
    Peng Liu
    Michel Mandjes
    Iwona Sierpińska-Tułacz
    Queueing Systems, 2017, 85 : 249 - 267
  • [20] Parameter Estimation for Ornstein-Uhlenbeck Process Driven by Liu Process
    Wei, Chao
    IAENG International Journal of Applied Mathematics, 2024, 54 (08) : 1643 - 1648