Some nonlinear dynamic inequalities on time scales

被引:0
|
作者
Wei Nian Li
Weihong Sheng
机构
[1] Binzhou University,Department of Mathematics
[2] Qufu Normal University,Department of Mathematics
来源
Proceedings Mathematical Sciences | 2007年 / 117卷
关键词
Time scales; nonlinear; dynamic inequality; dynamic equation;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential equation, J. Math. Anal. Appl.251 (2000) 736–751).
引用
收藏
页码:545 / 554
页数:9
相关论文
共 50 条
  • [1] Some nonlinear dynamic inequalities on time scales
    Li, Wei Nian
    Sheng, Weihong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04): : 545 - 554
  • [2] Some new dynamic inequalities on time scales
    Li, Wei Nian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) : 802 - 814
  • [3] Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales
    Gu, Juan
    Meng, Fanwei
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 235 - 242
  • [4] SOME REVERSE DYNAMIC INEQUALITIES ON TIME SCALES
    Agarwal, R. P.
    Mahmoud, R. R.
    O'Regan, D.
    Saker, S. H.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) : 445 - 454
  • [5] On some dynamic inequalities of Steffensen type on time scales
    Abdeldaim, A.
    El-Deeb, A. A.
    Agarwal, Praveen
    El-Sennary, H. A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4737 - 4753
  • [6] SOME DYNAMIC INEQUALITIES OF HARDY TYPE ON TIME SCALES
    Saker, S. H.
    O'Regan, Donal
    Agarwal, R. P.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03): : 1183 - 1199
  • [7] On some dynamic inequalities of Hilbert's-type on time scales
    El-Deeb, Ahmed A.
    Baleanu, Dumitrru
    Shah, Nehad Ali
    Abdeldaim, Ahmed
    AIMS MATHEMATICS, 2023, 8 (02): : 3378 - 3402
  • [8] A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales
    Liu, Haidong
    Li, Cuiyuan
    Shen, Feichao
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [9] A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales
    Haidong Liu
    Cuiyuan Li
    Feichao Shen
    Advances in Difference Equations, 2019
  • [10] Nonlinear integral inequalities on time scales with 'maxima'
    Thiramanus, Phollakrit
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,