Nuclear mass based on the multi-task learning neural network method

被引:0
作者
Xing-Chen Ming
Hong-Fei Zhang
Rui-Rui Xu
Xiao-Dong Sun
Yuan Tian
Zhi-Gang Ge
机构
[1] Lanzhou University,School of Nuclear Science and Technology
[2] China Institute of Atomic Energy,China Nuclear Data Center
来源
Nuclear Science and Techniques | 2022年 / 33卷
关键词
Macroscopic–microscopic model; Binding energy; Neural network; Multi-task learning;
D O I
暂无
中图分类号
学科分类号
摘要
The global nuclear mass based on the macroscopic–microscopic model was studied by applying a newly designed multi-task learning artificial neural network (MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei (Z≥8,N≥8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Z \ge 8,N \ge 8)$$\end{document} released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model (LDM) and data from AME2020 for each nucleus were obtained. To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning (STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties, such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square (RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{n}}$$\end{document}, Sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{p}}$$\end{document} can also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3–9% improvement can be achieved with the binding energy, and 20–30% improvement for Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{n}}$$\end{document}, Sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathrm{p}}$$\end{document}; for the testing sets, the reduction in deviations can even reach 30–40%, which significantly illustrates the advantage of the current MTL.
引用
收藏
相关论文
共 85 条
[1]  
Zhao T-L(2021)Improved macroscopic microscopic mass formula Chin. Phys. C 45 074108-622
[2]  
Bao X-J(2013)Density dependence of the symmetry energy probed by Phys. Rev. C 88 014302-53
[3]  
Zhang H-F(2013) decay energies of odd-A nuclei Phys. Scr. T152 014002-98
[4]  
Dong JM(2006)A new view of nuclear shells Nucl. Phys. A 777 601-97
[5]  
Zhang HF(2018)X-ray binaries Phys. Lett. B 778 48-204
[6]  
Wang LJ(2021)Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects Chin. Phys. C 45 030002-R27
[7]  
Kanungo R(2021)The Ame 2020 atomic mass evaluation [I] Chin. Phys. C 45 030003-36
[8]  
Schatz H(2013)The Ame 2020 atomic mass evaluation [II] Phys. Rev. C 88 024308-41
[9]  
Rehm KE(2008)Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient Nucl. Phys. A 812 72-14
[10]  
Niu ZM(2010)Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to Phys. Rev. C 82 054319-167