Further results on H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} filtering for uncertain 2-D discrete systems

被引:0
作者
Khalid Badie
Mohammed Alfidi
Zakaria Chalh
机构
[1] LISA,
[2] ENSAF,undefined
关键词
2-D systems; Polytopic uncertainties; Robust ; filtering; parameter-dependent; LMIs;
D O I
10.1007/s11045-020-00715-2
中图分类号
学科分类号
摘要
This paper deals with the problem of robust H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} filtering for uncertain 2-D discrete systems, the parameter uncertainties are assumed to reside in a polytopic region. Firstly, a new H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance analysis condition for the filtering error system is derived by exploiting a new structure of the Lyapunov function, and some analysis techniques. Secondly, based on the obtained condition, both parameter-independent and parameter-dependent H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} filters that ensure the robust asymptotic stability and a prescribed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance level of the corresponding filtering error systems are designed in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are presented to show that our results are less conservative than some existing ones.
引用
收藏
页码:1469 / 1490
页数:21
相关论文
共 92 条
  • [1] Badie K(2018)Delay-dependent stability and Circuits, Systems, and Signal Processing 37 5333-5350
  • [2] Alfidi M(2018) performance of 2-D continuous systems with delays Journal of Control, Automation and Electrical Systems 29 661-669
  • [3] Tadeo F(2019)New relaxed stability conditions for uncertain two-dimensional discrete systems Multidimensional Systems and Signal Processing 30 1327-1343
  • [4] Chalh Z(2019)Robust Optimal Control Applications and Methods 40 1103-262
  • [5] Badie K(2005) control for 2-D discrete state delayed systems with polytopic uncertainties Systems & Control Letters 54 251-2743
  • [6] Alfidi M(2013)Exponential stability analysis for 2D discrete switched systems with state delays Circuits, Systems, and Signal Processing 32 2723-505
  • [7] Chalh Z(2016)Robust Journal of Control, Automation and Electrical Systems 27 497-158
  • [8] Badie K(2015) filtering for uncertain linear systems: LMI based methods with parametric Lyapunov functions Signal Processing 113 147-681
  • [9] Alfidi M(2010)Delay-dependent stabilizability of 2D delayed continuous systems with saturating control Automatica 46 673-1768
  • [10] Chalh Z(2000)Robust IEEE Transactions on Signal Processing 48 1760-1994