On generating equations for the Kaup-Newell hierarchy

被引:11
作者
Yang Z. [1 ]
Zeng Y. [1 ]
机构
[1] Dept. of Math. Sci., Tsinghua Univ.
关键词
Generating equations; Kaup-Newell hierarchy; Lax integrable equations;
D O I
10.1007/s11766-007-0405-0
中图分类号
学科分类号
摘要
It is shown that the Kaup-Newell hierarchy can be derived from the so-called generating equations which are Lax integrable. Positive and negative flows in the hierarchy are derived simultaneously. The generating equations and mutual commutativity of these flows enable us to construct new Lax integrable equations. © Editorial Committee of Applied Mathematics 2007.
引用
收藏
页码:413 / 420
页数:7
相关论文
共 15 条
[1]  
Kaup D.J., Newell A.C., An exact solution for a derivative nonlinear Schrödinger equation, J Math Phys, 19, 4, pp. 798-801, (1978)
[2]  
Sasaki R., Canonical structure of soliton equations, II, The Kaup-Newell system, Physica D, 5, 1, pp. 66-74, (1982)
[3]  
Boiti M., Laddomada C., Pempinelli F., Et al., Backlund transformations related to the Kaup-Newell spectral problem, Physica D, 9, 3, pp. 425-432, (1983)
[4]  
Zeng Y.B., New factorization of the Kaup-Newell hierarchy, Physica D, 73, pp. 171-188, (1994)
[5]  
Ablowitz M.J., Kaup D.J., Newell A.C., Et al., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud Appl Math, 53, 4, pp. 249-315, (1974)
[6]  
Ablowitz M.J., Segur H., Solitons and the Inverse Scattering Transform, (1981)
[7]  
Gelfand I.M., Dickey L.A., Integrable nonlinear equations and the Liouville theorem, Funk Anal Priloz, 13, pp. 8-20, (1979)
[8]  
Dickey L.A., Soliton Equations and Hamiltonian Systems, (1991)
[9]  
Ohta Y., Satsuma J., Takahashi D., Et al., An elementary introduction to Sato theory, Progr Theoret Phys Suppl, 94, pp. 210-241, (1988)
[10]  
Miwa T., Jimbo M., Date E., Solitons: Differential Equations, Symmetries, and Infinite Dimensional Algebras, (2000)