Inverse spectral problems for Hill-type operators with frozen argument

被引:0
作者
Sergey Buterin
Yi-Teng Hu
机构
[1] Saratov State University,Department of Mathematics
[2] Xidian University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Sturm–Liouville-type operator; Functional-differential operator; Frozen argument; Inverse spectral problem; Processes with feedback; Riesz-basis of sines; 34A55; 34K29;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with nonlocal differential operators possessing a term with frozen (fixed) argument appearing, in particular, in modelling various physical systems with feedback. The presence of a feedback means that the external affect on the system depends on its current state. If this state is taken into account only at some fixed physical point, then mathematically this corresponds to an operator with frozen argument. In the present paper, we consider the operator Ly≡-y″(x)+q(x)y(a),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ly\equiv -y^{\prime \prime }(x)+q(x)y(a),$$\end{document}y(ν)(0)=γy(ν)(1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{(\nu )}(0)=\gamma y^{(\nu )}(1),$$\end{document}ν=0,1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu =0,1,$$\end{document} where γ∈C\{0}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in {\mathbb C}{\setminus }\{0\}.$$\end{document} The operator L is a nonlocal analog of the classical Hill operator describing various processes in cyclic or periodic media. We study two inverse problems of recovering the complex-valued square-integrable potential q(x) from some spectral information about L. The first problem involves only single spectrum as the input data. We obtain complete characterization of the spectrum and prove that its specification determines q(x) uniquely if and only if γ≠±1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \ne \pm 1.$$\end{document} For the rest (periodic and antiperiodic) cases, we describe classes of iso-spectral potentials and provide restrictions under which the uniqueness holds. The second inverse problem deals with recovering q(x) from the two spectra related to γ=±1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma =\pm 1.$$\end{document} We obtain necessary and sufficient conditions for its solvability and establish that uniqueness holds if and only if a=0,1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0,1.$$\end{document} For a∈(0,1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in (0,1),$$\end{document} we describe classes of iso-bispectral potentials and give restrictions under which the uniqueness resumes. Algorithms for solving both inverse problems are provided. In the appendix, we prove Riesz-basisness of an auxiliary two-sided sequence of sines.
引用
收藏
相关论文
共 43 条
[1]  
Albeverio S(2007)Inverse spectral problems for non-local Sturm–Liouville operators Inverse Prob. 23 523-535
[2]  
Hryniv RO(2009)Inverse eigenvalue problems for nonlocal Sturm–Liouville operators Meth. Func. Anal. Top. 15 41-47
[3]  
Nizhnik LP(2010)Inverse nonlocal Sturm–Liouville problem Inverse Prob. 26 125006-394
[4]  
Nizhnik LP(2011)Inverse spectral nonlocal problem for the first order ordinary differential equation Tamkang J. Math. 42 385-78
[5]  
Nizhnik LP(2012)Inverse eigenvalue problems for nonlocal Sturm–Liouville operators on a star graph Methods Funct. Anal. Topol. 18 68-1041
[6]  
Nizhnik LP(2019)An inverse spectral problem for Sturm–Liouville operators with frozen argument J. Math. Anal. Appl. 472 1028-438
[7]  
Nizhnik LP(2019)On recovering a Sturm–Liouville-type operator with the frozen argument rationally proportioned to the interval length J. Inv. Ill Posed Probl. 27 429-1114
[8]  
Bondarenko NP(2019)Trace formula for nonlocal differential operators Indian J. Pure Appl. Math. 50 1107-347
[9]  
Buterin SA(2019)Inverse nodal problem for nonlocal differential operators Tamkang J. Math. 50 337-1913
[10]  
Vasiliev SV(2020)On the inverse problem for Sturm–Liouville-type operators with frozen argument: rational case Comp. Appl. Math. 39 5-542